Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(40): e2204509119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161894

RESUMEN

Multiple sclerosis (MS), an autoimmune-driven, inflammatory demyelinating disease of the central nervous system (CNS), causes irreversible accumulation of neurological deficits to a variable extent. Although there are potent disease-modifying agents for its initial relapsing-remitting phase, immunosuppressive therapies show limited efficacy in secondary progressive MS (SPMS). Although modulation of sphingosine-1 phosphate receptors has proven beneficial during SPMS, the underlying mechanisms are poorly understood. In this project, we followed the hypothesis that siponimod, a sphingosine-1 phosphate receptor modulator, exerts protective effects by direct modulation of glia cell function (i.e., either astrocytes, microglia, or oligodendrocytes). To this end, we used the toxin-mediated, nonautoimmune MS animal model of cuprizone (Cup) intoxication. On the histological level, siponimod ameliorated cuprizone-induced oligodendrocyte degeneration, demyelination, and axonal injury. Protective effects were evident as well using GE180 translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET)/computed tomography (CT) imaging or next generation sequencing (NGS). Siponimod also ameliorated the cuprizone-induced pathologies in Rag1-deficient mice, demonstrating that the protection is independent of T and B cell modulation. Proinflammatory responses in primary mixed astrocytes/microglia cell cultures were not modulated by siponimod, suggesting that other cell types than microglia and astrocytes are targeted. Of note, siponimod completely lost its protective effects in S1pr5-deficient mice, suggesting direct protection of degenerating oligodendrocytes. Our study demonstrates that siponimod exerts protective effects in the brain in a S1PR5-dependent manner. This finding is not just relevant in the context of MS but in other neuropathologies as well, characterized by a degeneration of the axon-myelin unit.


Asunto(s)
Azetidinas , Compuestos de Bencilo , Esclerosis Múltiple Crónica Progresiva , Oligodendroglía , Receptores de Esfingosina-1-Fosfato , Esfingosina , Animales , Azetidinas/farmacología , Compuestos de Bencilo/farmacología , Cuprizona , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Oligodendroglía/efectos de los fármacos , Esfingosina/farmacología , Esfingosina/uso terapéutico , Receptores de Esfingosina-1-Fosfato/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445742

RESUMEN

The Cuprizone mouse model is widely used in studies on de- and remyelination. In the hands of different experimenters, the Cuprizone concentrations that lead to comparable levels of demyelination differ considerably. The reasons for this variability are unknown. In this study, we tested whether different Cuprizone formulations from different vendors and manufacturers influenced Cuprizone-induced histopathological hallmarks. We intoxicated male C57BL/6 mice with six Cuprizone powders that differed in their manufacturer, vendor, and purity. After five weeks, we analyzed the body weight changes over the course of the experiment, as well as the demyelination, astrogliosis, microgliosis and axonal damage by histological LFB-PAS staining and immunohistochemical labelling of PLP, IBA1, GFAP and APP. All Cuprizone formulations induced demyelination, astrogliosis, microgliosis, axonal damage and a moderate drop in body weight at the beginning of the intoxication period. In a cumulative evaluation of all analyses, two Cuprizone formulations performed weaker than the other formulations. In conclusion, all tested formulations did work, but the choice of Cuprizone formulation may have been responsible for the considerable variability in the experimental outcomes.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Masculino , Animales , Ratones , Cuprizona/toxicidad , Gliosis , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Ratones Endogámicos C57BL , Peso Corporal , Modelos Animales de Enfermedad , Vaina de Mielina/patología
3.
Cells ; 12(16)2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37626895

RESUMEN

This study comprehensively addresses the involvement of the protein CKLF-like Marvel transmembrane domain-containing family member 5 (CMTM5) in the context of demyelination and cytodegenerative autoimmune diseases, particularly multiple Sclerosis (MS). An observed reduction in CMTM5 expression in post-mortem MS lesions prompted further investigations in both in vitro and in vivo animal models. In the cuprizone animal model, we detected a decrease in CMTM5 expression in oligodendrocytes that is absent in other members of the CMTM protein family. Our findings also confirm these results in the experimental autoimmune encephalomyelitis (EAE) model with decreased CMTM5 expression in both cerebellum and spinal cord white matter. We also examined the effects of a Cmtm5 knockdown in vitro in the oligodendroglial Oli-neu mouse cell line using the CRISPR interference technique. Interestingly, we found no effects on cell response to thapsigargin-induced endoplasmic reticulum (ER) stress as determined by Atf4 activity, an indicator of cellular stress responses. Overall, these results substantiate previous findings suggesting that CMTM5, rather than contributing to myelin biogenesis, is involved in maintaining axonal integrity. Our study further demonstrates that the knockdown of Cmtm5 in vitro does not modulate oligodendroglial responses to ER stress. These results warrant further investigation into the functional role of CMTM5 during axonal degeneration in the context of demyelinating conditions.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Esclerosis Múltiple/genética , Proteínas de la Mielina/genética , Encefalomielitis Autoinmune Experimental/genética , Autopsia , Oligodendroglía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA