Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurochem ; 158(2): 539-553, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33797782

RESUMEN

Converging lines of evidence from several models, and post-mortem human brain tissue studies, support the involvement of the kynurenine pathway (KP) in Huntington's disease (HD) pathogenesis. Quantifying KP metabolites in HD biofluids is desirable, both to study pathobiology and as a potential source of biomarkers to quantify pathway dysfunction and evaluate the biochemical impact of therapeutic interventions targeting its components. In a prospective single-site controlled cohort study with standardised collection of cerebrospinal fluid (CSF), blood, phenotypic and imaging data, we used high-performance liquid-chromatography to measure the levels of KP metabolites-tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid and quinolinic acid-in CSF and plasma of 80 participants (20 healthy controls, 20 premanifest HD and 40 manifest HD). We investigated short-term stability, intergroup differences, associations with clinical and imaging measures and derived sample-size calculation for future studies. Overall, KP metabolites in CSF and plasma were stable over 6 weeks, displayed no significant group differences and were not associated with clinical or imaging measures. We conclude that the studied metabolites are readily and reliably quantifiable in both biofluids in controls and HD gene expansion carriers. However, we found little evidence to support a substantial derangement of the KP in HD, at least to the extent that it is reflected by the levels of the metabolites in patient-derived biofluids.


Asunto(s)
Enfermedad de Huntington/sangre , Enfermedad de Huntington/líquido cefalorraquídeo , Quinurenina/sangre , Quinurenina/líquido cefalorraquídeo , Transducción de Señal , Adulto , Anciano , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Cromatografía Líquida de Alta Presión , Estudios de Cohortes , Femenino , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos
2.
J Neurochem ; 134(4): 693-703, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25946513

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by poor attention, impulse control and hyperactivity. A significant proportion of ADHD patients are also co-morbid for other psychiatric problems including mood disorders and these patients may be managed with a combination of psychostimulants and anti-depressants. While it is generally accepted that enhanced catecholamine signalling via the action of psychostimulants is likely responsible for the cognitive improvement in ADHD, other neurotransmitters including acetylcholine and histamine may be involved. In the present study, we have examined the effect of lisdexamfetamine dimesylate (LDX), an amphetamine pro-drug that is approved for the treatment of ADHD on acetylcholine and histamine efflux in pre-frontal cortex and hippocampus alone and in combination with the anti-depressant s-citalopram. LDX increased cortical acetylcholine efflux, an effect that was not significantly altered by co-administration of s-citalopram. Cortical and hippocampal histamine were markedly increased by LDX, an effect that was attenuated in the hippocampus but not in pre-frontal cortex when co-administered with s-citalopram. Taken together, these results suggest that efflux of acetylcholine and histamine may be involved in the therapeutic effects of LDX and are differentially influenced by the co-administration of s-citalopram. Attention deficit hyperactivity disorder (ADHD) is characterized by poor attention, impulse control and hyperactivity. Some ADHD patients are also co-morbid for mood disorders and may be managed with psychostimulants (e.g. lisdexamfetamine, LDX) and anti-depressants (e.g. s-citalopram). LDX increased the efflux of acetylcholine and histamine, neurotransmitters involved in cognitive function, which were differentially influenced when co-administered with s-citalopram. Acetylcholine and histamine may be involved in the therapeutic effects of LDX and are differentially affected by the co-administration of s-citalopram.


Asunto(s)
Acetilcolina/metabolismo , Citalopram/administración & dosificación , Dextroanfetamina/administración & dosificación , Hipocampo/metabolismo , Liberación de Histamina/fisiología , Corteza Prefrontal/metabolismo , Animales , Antidepresivos de Segunda Generación/administración & dosificación , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Quimioterapia Combinada , Hipocampo/efectos de los fármacos , Liberación de Histamina/efectos de los fármacos , Dimesilato de Lisdexanfetamina , Masculino , Microdiálisis/métodos , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
3.
Front Pharmacol ; 13: 958543, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105215

RESUMEN

Monoclonal antibodies play an important role in the treatment of various diseases. However, the development of these drugs against neurological disorders where the drug target is located in the brain is challenging and requires a good understanding of the local drug concentration in the brain. In this original research, we investigated the systemic and local pharmacokinetics in the brain of healthy rats after either intravenous (IV) or intracerebroventricular (ICV) administration of EGFRvIII-T-Cell bispecific (TCB), a bispecific monoclonal antibody. We established an experimental protocol that allows serial sampling in serum, cerebrospinal fluid (CSF) and interstitial fluid (ISF) of the prefrontal cortex in freely moving rats. For detection of drug concentration in ISF, a push-pull microdialysis technique with large pore membranes was applied. Brain uptake into CSF and ISF was characterized and quantified with a reduced brain physiologically-based pharmacokinetic model. The model allowed us to interpret the pharmacokinetic processes of brain uptake after different routes of administration. The proposed model capturing the pharmacokinetics in serum, CSF and ISF of the prefrontal cortex suggests a barrier function between the CSF and ISF that impedes free antibody transfer. This finding suggests that ICV administration may not be better suited to reach higher local drug exposure as compared to IV administration. The model enabled us to quantify the relative contribution of the blood-brain barrier (BBB) and Blood-CSF-Barrier to the uptake into the interstitial fluid of the brain. In addition, we compared the brain uptake of three monoclonal antibodies after IV dosing. In summary, the presented approach can be applied to profile compounds based on their relative uptake in the brain and provides quantitative insights into which pathways are contributing to the net exposure in the brain.

4.
Exp Neurol ; 282: 99-118, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27163548

RESUMEN

Dysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is controlled by the activity of kynurenine mono-oxygenase (KMO), an enzyme which catalyzes the synthesis of 3-OH-Kyn from Kyn. In order to determine the role of KMO in the phenotype of mouse models of HD, we have developed a potent and selective KMO inhibitor termed CHDI-340246. We show that this compound, when administered orally to transgenic mouse models of HD, potently and dose-dependently modulates the Kyn pathway in peripheral tissues and in the central nervous system. The administration of CHDI-340246 leads to an inhibition of the formation of 3-OH-Kyn and Quin, and to an elevation of Kyn and Kynurenic acid (KynA) levels in brain tissues. We show that administration of CHDI-340246 or of Kyn and of KynA can restore several electrophysiological alterations in mouse models of HD, both acutely and after chronic administration. However, using a comprehensive panel of behavioral tests, we demonstrate that the chronic dosing of a selective KMO inhibitor does not significantly modify behavioral phenotypes or natural progression in mouse models of HD.


Asunto(s)
Fenómenos Electrofisiológicos/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/fisiopatología , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Pirimidinas/uso terapéutico , Análisis de Varianza , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Fenómenos Electrofisiológicos/genética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Hipocampo/efectos de los fármacos , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Técnicas In Vitro , Ácido Quinurénico/metabolismo , Quinurenina 3-Monooxigenasa/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microdiálisis , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacología , Ácido Quinolínico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transfección , Repeticiones de Trinucleótidos/genética , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
5.
FEBS J ; 277(7): 1653-65, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20156289

RESUMEN

Apoptosis or programmed cell death is an inherent part of the development and homeostasis of multicellular organisms. Dysregulation of apoptosis is implicated in the pathogenesis of diseases such as cancer, neurodegenerative diseases and autoimmune disorders. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to induce apoptosis by binding death receptor (DR)4 (TRAIL-R1) and DR5 (TRAIL-R2), which makes TRAIL an interesting and promising therapeutic target. To identify peptides that specifically interact with DR5, a disulfide-constrained phage display peptide library was screened for binders towards this receptor. Phage-displayed peptides were identified that bind specifically to DR5 and not to DR4, nor any of the decoy receptors. We show that the synthesized peptide, YCKVILTHRCY, in both monomeric and dimeric forms, binds specifically to DR5 in such a way that TRAIL binding to DR5 is inhibited. Surface plasmon resonance studies showed higher affinity towards DR5 for the dimeric form then the monomeric form of the peptide, with apparent K(d) values of 40 nm versus 272 nm, respectively. Binding studied on cell lines by flow cytometry analyses showed concentration-dependent binding. Upon co-incubation with increasing concentrations of TRAIL, the peptide binding was reduced. Moreover, both the monomeric and dimeric forms of the peptide reduced TRAIL-induced cell death in Colo205 colon carcinoma cells. The peptide, YCKVILTHRCY, or its derivates, may be a useful investigative tool for dissecting signalling via DR5 relative to DR4 or could act as a lead peptide for the development of therapeutic agents in diseases with dysregulated TRAIL-signalling.


Asunto(s)
Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/antagonistas & inhibidores , Apoptosis , Línea Celular Tumoral , Separación Celular , Dimerización , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo/métodos , Humanos , Células Jurkat , Cinética , Biblioteca de Péptidos , Péptidos/química , Unión Proteica , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/química , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/fisiología , Resonancia por Plasmón de Superficie , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA