Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(16): 6408-6416, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602505

RESUMEN

The noninvasive in situ monitoring of the status of drug retention and implant integrity of subcutaneous implants would allow optimization of therapy and avoid periods of subtherapeutic delivery kinetics. A proof-of principle study was conducted to determine the use of microspatially offset low-frequency Raman spectroscopy (micro-SOLFRS) for nonintrusive in situ analysis of subcutaneous drug delivery systems. Caffeine was used as the model drug, and it was embedded in a circular-shape Soluplus matrix via vacuum compression molding. For the exploratory analysis, prototype implants were positioned underneath skin tissue samples, and various caffeine concentrations (1-50% w/w) and micro-SOLFRS displacement settings (Δz = 0-8 mm) were tested from the pseudo three-dimensional (3D)-imaging perspective. This format allowed the optimization of real-time micro-SOLFRS analysis of implants through skin tissue that was embedded in an agarose hydrogel. Notably, this analytical approach allowed the temporal and spatial erosion of the implant and solid-state transformations of caffeine to be distinguished. The spectrometric results correlated with complementary high-performance liquid chromatography (HPLC) determination of changes in drug concentration, illustrating drug dissipation/diffusion characteristics. The discovered capability of micro-SOLFRS for in situ measurements of drugs and implants makes it attractive for biomedical diagnostics that, ultimately, could result in development of a new point-of-care technology.

2.
Biomacromolecules ; 24(7): 3203-3214, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37307231

RESUMEN

Protease-responsive multi-arm polyethylene glycol-based microparticles with biscysteine peptide crosslinkers (CGPGG↓LAGGC) were obtained for intradermal drug delivery through inverse suspension photopolymerization. The average size of the spherical hydrated microparticles was ∼40 µm after crosslinking, making them attractive as a skin depot and suitable for intradermal injections, as they are readily dispensable through 27G needles. The effects of exposure to matrix metalloproteinase 9 (MMP-9) on the microparticles were evaluated by scanning electron microscopy and atomic force microscopy, demonstrating partial network destruction and decrease in elastic moduli. Given the recurring course of many skin diseases, the microparticles were exposed to MMP-9 in a flare-up mimicking fashion (multiple-time exposure), showing a significant increase in release of tofacitinib citrate (TC) from the MMP-responsive microparticles, which was not seen for the non-responsive microparticles (polyethylene glycol dithiol crosslinker). It was found that the degree of multi-arm complexity of the polyethylene glycol building blocks can be utilized to tune not only the release profile of TC but also the elastic moduli of the hydrogel microparticles, with Young's moduli ranging from 14 to 140 kPa going from 4-arm to 8-arm MMP-responsive microparticles. Finally, cytotoxicity studies conducted with skin fibroblasts showed no reduction in metabolic activity after 24 h exposure to the microparticles. Overall, these findings demonstrate that protease-responsive microparticles exhibit the properties of interest for intradermal drug delivery.


Asunto(s)
Hidrogeles , Metaloproteinasa 9 de la Matriz , Hidrogeles/química , Péptido Hidrolasas , Sistemas de Liberación de Medicamentos , Polietilenglicoles/química
3.
Crit Rev Biochem Mol Biol ; 55(3): 252-273, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32530323

RESUMEN

Elastin is an important protein of the extracellular matrix of higher vertebrates, which confers elasticity and resilience to various tissues and organs including lungs, skin, large blood vessels and ligaments. Owing to its unique structure, extensive cross-linking and durability, it does not undergo significant turnover in healthy tissues and has a half-life of more than 70 years. Elastin is not only a structural protein, influencing the architecture and biomechanical properties of the extracellular matrix, but also plays a vital role in various physiological processes. Bioactive elastin peptides termed elastokines - in particular those of the GXXPG motif - occur as a result of proteolytic degradation of elastin and its non-cross-linked precursor tropoelastin and display several biological activities. For instance, they promote angiogenesis or stimulate cell adhesion, chemotaxis, proliferation, protease activation and apoptosis. Elastin-degrading enzymes such as matrix metalloproteinases, serine proteases and cysteine proteases slowly damage elastin over the lifetime of an organism. The destruction of elastin and the biological processes triggered by elastokines favor the development and progression of various pathological conditions including emphysema, chronic obstructive pulmonary disease, atherosclerosis, metabolic syndrome and cancer. This review gives an overview on types of human elastases and their action on human elastin, including the formation, structure and biological activities of elastokines and their role in common biological processes and severe pathological conditions.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Elastina/química , Elastina/metabolismo , Neoplasias/metabolismo , Elastasa Pancreática/metabolismo , Proteolisis , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Envejecimiento/metabolismo , Animales , Proteasas de Cisteína/metabolismo , Humanos , Metaloproteinasas de la Matriz/metabolismo , Pepsina A/metabolismo , Receptores de Superficie Celular/metabolismo , Serina Proteasas/metabolismo , Tropoelastina/química , Tropoelastina/metabolismo
4.
Vet Res ; 53(1): 12, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35180885

RESUMEN

Recent publications suggest PCV2 vaccine-induced protection is superior when the vaccine and challenge are closely matched. PCV2's evolutionary rate, propensity for recombination, and genotype shifting, all provide rationale for modernizing PCV2 vaccines. One mechanism to increase a vaccine's epitope breadth is by designing a bivalent vaccine. The objective of these studies was to evaluate efficacy of a monovalent (PCV1-2 chimera, cPCV2a or cPCV2b) and bivalent (cPCV2a-cPCV2b) vaccine in terms of homologous and heterologous efficacy. In Study A, pigs were vaccinated with cPCV2a or saline and challenged with PCV2a or PCV2b. In Study B, pigs were vaccinated with cPCV2a, cPCV2a-cPCV2b bivalent, or saline, and challenged with PCV2a. In Study C, pigs were vaccinated with cPCV2b, cPCV2a-cPCV2b bivalent, or saline, and challenged with PCV2b. In all studies vaccines and saline were administered intramuscularly to pigs at three to four weeks of age. Virulent PCV2b or PCV2a was administered to all animals approximately three weeks post-vaccination. Both mono and bivalent vaccinated groups demonstrated significantly lower viremia, percent of animals ever viremic, percent of animals with lymphoid depletion and/or histiocytic replacement, and percent of animals with PCV2 colonization of lymphoid tissues compared to saline controls. In Study A, a biologically relevant, though not significantly different, improvement in homologous versus heterologous protection was observed. In Studies B and C, biologically superior efficacy of the bivalent cPCV2a-cPCV2b vaccine compared to either monovalent vaccine was demonstrated. Taken together, cross-protection among mismatched PCV2 vaccine and challenge genotypes is not 100%; a bivalent PCV2 vaccine may provide the best opportunity to broaden coverage to circulating strains of PCV2.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Vacunas Virales , Animales , Anticuerpos Antivirales , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/veterinaria , Circovirus/genética , Porcinos
5.
IUBMB Life ; 72(5): 842-854, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31834666

RESUMEN

Elastic fibers are essential assemblies of vertebrates and confer elasticity and resilience to various organs including blood vessels, lungs, skin, and ligaments. Mature fibers, which comprise a dense and insoluble elastin core and a microfibrillar mantle, are extremely resistant toward intrinsic and extrinsic influences and maintain elastic function over the human lifespan in healthy conditions. The oxidative deamination of peptidyl lysine to peptidyl allysine in elastin's precursor tropoelastin is a crucial posttranslational step in their formation. The modification is catalyzed by members of the family of lysyl oxidases and the starting point for subsequent manifold condensation reactions that eventually lead to the highly cross-linked elastomer. This review summarizes the current understanding of the formation of cross-links within and between the monomer molecules, the molecular sites, and cross-link types involved and the pathological consequences of abnormalities in the cross-linking process.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades del Tejido Conjuntivo/metabolismo , Tejido Elástico/metabolismo , Elastina/metabolismo , Procesamiento Proteico-Postraduccional , Proteína-Lisina 6-Oxidasa/metabolismo , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/metabolismo , Animales , Vasos Sanguíneos/química , Vasos Sanguíneos/metabolismo , Enfermedades del Tejido Conjuntivo/patología , Tejido Elástico/química , Elastina/química , Humanos , Ligamentos/química , Ligamentos/metabolismo , Pulmón/química , Pulmón/metabolismo , Lisina/metabolismo , Microfibrillas/química , Microfibrillas/metabolismo , Oxidación-Reducción , Piel/química , Piel/metabolismo
6.
FASEB J ; 33(4): 5468-5481, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30676771

RESUMEN

Lysyl oxidases (LOXs) play a central role in extracellular matrix remodeling during development and tumor growth and fibrosis through cross-linking of collagens and elastin. We have limited knowledge of the structure and substrate specificity of these secreted enzymes. LOXs share a conserved C-terminal catalytic domain but differ in their N-terminal region, which is composed of 4 repeats of scavenger receptor cysteine-rich (SRCR) domains in LOX-like (LOXL) 2. We investigated by X-ray scattering and electron microscopy the low-resolution structure of the full-length enzyme and the structure of a shorter form lacking the catalytic domain. Our data demonstrate that LOXL2 has a rod-like structure with a stalk composed of the SRCR domains and the catalytic domain at its tip. We detected direct interaction between LOXL2 and tropoelastin (TE) and also LOXL2-mediated deamination of TE. Using proteomics, we identified several allysines together with cross-linked TE peptides. The elastin-like material generated was resistant to trypsin proteolysis and displayed mechanical properties similar to mature elastin. Finally, we detected the codistribution of LOXL2 and elastin in the vascular wall. Altogether, these data suggest that LOXL2 could participate in elastogenesis in vivo and could be used as a means of cross-linking TE in vitro for biomimetic and cell-compatible tissue engineering purposes.-Schmelzer, C. E. H., Heinz, A., Troilo, H., Lockhart-Cairns, M.-P., Jowitt, T. A., Marchand, M. F., Bidault, L., Bignon, M., Hedtke, T., Barret, A., McConnell, J. C., Sherratt, M. J., Germain, S., Hulmes, D. J. S., Baldock, C., Muller, L. Lysyl oxidase-like 2 (LOXL2)-mediated cross-linking of tropoelastin.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Tropoelastina/metabolismo , Animales , Células CHO , Dominio Catalítico/fisiología , Línea Celular , Colágeno/metabolismo , Cricetulus , Elastina/metabolismo , Matriz Extracelular/metabolismo , Humanos , Proteolisis , Especificidad por Sustrato/fisiología
7.
Cell Mol Life Sci ; 76(4): 791-807, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30498996

RESUMEN

In addition to its critical role in lysosomes for catabolism of sialoglycoconjugates, NEU1 is expressed at the plasma membrane and regulates a myriad of receptors by desialylation, playing a key role in many pathophysiological processes. Here, we developed a proteomic approach dedicated to the purification and identification by LC-MS/MS of plasma membrane NEU1 interaction partners in human macrophages. Already known interaction partners were identified as well as several new candidates such as the class B scavenger receptor CD36. Interaction between NEU1 and CD36 was confirmed by complementary approaches. We showed that elastin-derived peptides (EDP) desialylate CD36 and that this effect was blocked by the V14 peptide, which blocks the interaction between bioactive EDP and the elastin receptor complex (ERC). Importantly, EDP also increased the uptake of oxidized LDL by macrophages that is blocked by both the V14 peptide and the sialidase inhibitor 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA). These results demonstrate, for the first time, that binding of EDP to the ERC indirectly modulates CD36 sialylation level and regulates oxidized LDL uptake through this sialidase. These effects could contribute to the previously reported proatherogenic role of EDP and add a new dimension in the regulation of biological processes through NEU1.


Asunto(s)
Aterosclerosis , Antígenos CD36/metabolismo , Neuraminidasa/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Antígenos CD36/genética , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Elastina/química , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacología , Neuraminidasa/genética , Péptidos/metabolismo , Péptidos/farmacología , Unión Proteica , Proteómica/métodos , Interferencia de ARN , Células THP-1
8.
Int J Mol Sci ; 21(13)2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635512

RESUMEN

Fibroblast to myofibroblast differentiation is a key feature of wound-healing in soft tissues, including the vagina. Vaginal fibroblasts maintain the integrity of the vaginal wall tissues, essential to keep pelvic organs in place and avoid pelvic organ prolapse (POP). The micro-environment of vaginal tissues in POP patients is stiffer and has different extracellular matrix (ECM) composition than healthy vaginal tissues. In this study, we employed a series of matrices with known stiffnesses, as well as vaginal ECMs, in combination with vaginal fibroblasts from POP and healthy tissues to investigate how matrix stiffness and composition regulate myofibroblast differentiation in vaginal fibroblasts. Stiffness was positively correlated to production of α-smooth muscle actin (α-SMA). Vaginal ECMs induced myofibroblast differentiation as both α-SMA and collagen gene expressions were increased. This differentiation was more pronounced in cells seeded on POP-ECMs that were stiffer than those derived from healthy tissues and had higher collagen and elastin protein content. We showed that stiffness and ECM content regulate vaginal myofibroblast differentiation. We provide preliminary evidence that vaginal fibroblasts might recognize POP-ECMs as scar tissues that need to be remodeled. This is fundamentally important for tissue repair, and provides a rational basis for POP disease modelling and therapeutic innovations in vaginal reconstruction.


Asunto(s)
Diferenciación Celular/fisiología , Matriz Extracelular/fisiología , Fibroblastos/fisiología , Miofibroblastos/fisiología , Vagina/fisiología , Actinas/metabolismo , Células Cultivadas , Colágeno/metabolismo , Elastina/metabolismo , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Expresión Génica/fisiología , Humanos , Miofibroblastos/metabolismo , Prolapso de Órgano Pélvico/metabolismo , Prolapso de Órgano Pélvico/patología , Vagina/metabolismo
9.
J Biol Chem ; 293(39): 15107-15119, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30108173

RESUMEN

Elastin is an essential vertebrate protein responsible for the elasticity of force-bearing tissues such as those of the lungs, blood vessels, and skin. One of the key features required for the exceptional properties of this durable biopolymer is the extensive covalent cross-linking between domains of its monomer molecule tropoelastin. To date, elastin's exact molecular assembly and mechanical properties are poorly understood. Here, using bovine elastin, we investigated the different types of cross-links in mature elastin to gain insight into its structure. We purified and proteolytically cleaved elastin from a single tissue sample into soluble cross-linked and noncross-linked peptides that we studied by high-resolution MS. This analysis enabled the elucidation of cross-links and other elastin modifications. We found that the lysine residues within the tropoelastin sequence were simultaneously unmodified and involved in various types of cross-links with different other domains. The Lys-Pro domains were almost exclusively linked via lysinonorleucine, whereas Lys-Ala domains were found to be cross-linked via lysinonorleucine, allysine aldol, and desmosine. Unexpectedly, we identified a high number of intramolecular cross-links between lysine residues in close proximity. In summary, we show on the molecular level that elastin formation involves random cross-linking of tropoelastin monomers resulting in an unordered network, an unexpected finding compared with previous assumptions of an overall beaded structure.


Asunto(s)
Biopolímeros/química , Elastina/química , Lisina/química , Tropoelastina/química , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/química , Animales , Biopolímeros/genética , Bovinos , Desmosina/química , Dipéptidos/química , Elastina/genética , Humanos , Dominios Proteicos/genética , Tropoelastina/genética
10.
Am J Respir Cell Mol Biol ; 59(2): 167-178, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29420065

RESUMEN

Alpha-1 antitrypsin (AAT) deficiency-related emphysema is the fourth leading indication for lung transplant. Chymotrypsin-like elastase 1 (Cela1) is a digestive protease that is expressed during lung development in association with regions of elastin remodeling, exhibits stretch-dependent expression during lung regeneration, and binds lung elastin in a stretch-dependent manner. AAT covalently neutralizes Cela1 in vitro. We sought to determine the role of Cela1 in postnatal lung physiology, whether it interacted with AAT in vivo, and to detect any effects it may have in the context of AAT deficiency. The lungs of Cela1-/- mice had aberrant lung elastin structure and higher elastance as assessed with the flexiVent system. On the basis of in situ zymography with ex vivo lung stretch, Cela1 was solely responsible for stretch-inducible lung elastase activity. By mass spectrometry, Cela1 degraded mature elastin similarly to pancreatic elastase. Cela1 promoter and protein sequences were phylogenetically distinct in the placental mammal lineage, suggesting an adaptive role for lung-expressed Cela1 in this clade. A 6-week antisense oligonucleotide mouse model of AAT deficiency resulted in emphysema with increased Cela1 mRNA and reduction of approximately 70 kD Cela1, consistent with covalent binding of Cela1 by AAT. Cela1-/- mice were completely protected against emphysema in this model. Cela1 was increased in human AAT-deficient emphysema. Cela1 is important in physiologic and pathologic stretch-dependent remodeling processes in the postnatal lung. AAT is an important regulator of this process. Our findings provide proof of concept for the development of anti-Cela1 therapies to prevent and/or treat AAT-deficient emphysema.


Asunto(s)
Enfisema/genética , Regulación Enzimológica de la Expresión Génica/genética , Elastasa Pancreática/metabolismo , alfa 1-Antitripsina/genética , Animales , Fenómenos Biomecánicos , Elastina/metabolismo , Fibroblastos/metabolismo , Humanos , Pulmón/crecimiento & desarrollo , Ratones Noqueados , Elastasa Pancreática/genética
11.
Biochim Biophys Acta ; 1860(10): 2169-77, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27180175

RESUMEN

BACKGROUND: This study aimed to investigate the prolyl and lysine hydroxylation in elastin from different species and tissues. METHODS: Enzymatic digests of elastin samples from human, cattle, pig and chicken were analyzed using mass spectrometry and bioinformatics tools. RESULTS: It was confirmed at the protein level that elastin does not contain hydroxylated lysine residues regardless of the species. In contrast, prolyl hydroxylation sites were identified in all elastin samples. Moreover, the analysis of the residues adjacent to prolines allowed the determination of the substrate site preferences of prolyl 4-hydroxylase. It was found that elastins from all analyzed species contain hydroxyproline and that at least 20%-24% of all proline residues were partially hydroxylated. Determination of the hydroxylation degrees of specific proline residues revealed that prolyl hydroxylation depends on both the species and the tissue, however, is independent of age. The fact that the highest hydroxylation degrees of proline residues were found for elastin from the intervertebral disc and knowledge of elastin arrangement in this tissue suggest that hydroxylation plays a biomechanical role. Interestingly, a proline-rich domain of tropoelastin (domain 24), which contains several repeats of bioactive motifs, does not show any hydroxyproline residues in the mammals studied. CONCLUSIONS: The results show that prolyl hydroxylation is not a coincidental feature and may contribute to the adaptation of the properties of elastin to meet the functional requirements of different tissues. GENERAL SIGNIFICANCE: The study for the first time shows that prolyl hydroxylation is highly regulated in elastin.


Asunto(s)
Colágeno/metabolismo , Elastina/metabolismo , Hidroxilación/genética , Prolina/metabolismo , Prolil Hidroxilasas/química , Animales , Bovinos , Pollos , Colágeno/genética , Elastina/genética , Humanos , Lisina/química , Lisina/metabolismo , Especificidad de Órganos , Prolil Hidroxilasas/genética , Procesamiento Proteico-Postraduccional/genética , Porcinos
12.
New Phytol ; 210(4): 1244-58, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26840406

RESUMEN

Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including nature-like light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as Fv /Fm , light-acclimated PSII activity ΦPSII , and total Chl). Trimers of the PSII light-harvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.


Asunto(s)
Cadmio/toxicidad , Magnoliopsida/fisiología , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Luz , Magnoliopsida/efectos de los fármacos , Magnoliopsida/efectos de la radiación , Superóxidos/metabolismo
13.
Am J Med Genet A ; 170(7): 1832-42, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27311421

RESUMEN

Williams-Beuren syndrome (WBS) is a congenital disorder, which involves the heterozygous deletion of the elastin gene and other genes on chromosome 7. Clinical symptoms that are associated with hemizygosity of the essential extracellular matrix protein elastin include premature aging of the skin and supravalvular aortic stenosis. However, only little is known about the molecular basis of structural abnormalities in the connective tissue of WBS patients. Therefore, for the first time this study aimed to systematically characterize and compare the structure and amount of elastin present in skin and aortic tissue from WBS patients and healthy individuals. Elastin fibers were isolated from tissue biopsies, and it was found that skin of WBS patients contains significantly less elastin compared to skin of healthy individuals. Scanning electron microscopy and mass spectrometric measurements combined with bioinformatics data analysis were used to investigate the molecular-level structure of elastin. Scanning electron microscopy revealed clear differences between WBS and healthy elastin. With respect to the molecular-level structure, it was found that the proline hydroxylation degree differed between WBS and healthy elastin, while the tropoelastin isoform appeared to be the same. In terms of cross-linking, no differences in the content of the tetrafunctional cross-links desmosine and isodesmosine were found between WBS and healthy elastin. However, principal component analysis revealed differences between enzymatic digests of elastin from healthy probands and WBS patients, which indicates differing susceptibility toward enzymatic cleavage. Overall, the study contributes to a better understanding of the correlation between genotypic and elastin-related phenotypic features of WBS patients. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Estenosis Aórtica Supravalvular/genética , Elastina/genética , Tropoelastina/genética , Síndrome de Williams/genética , Adulto , Anciano de 80 o más Años , Envejecimiento/genética , Envejecimiento/patología , Aorta/patología , Estenosis Aórtica Supravalvular/fisiopatología , Biopsia , Elastina/ultraestructura , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Microscopía Electrónica de Rastreo , Persona de Mediana Edad , Tropoelastina/ultraestructura , Síndrome de Williams/fisiopatología
14.
Biochim Biophys Acta ; 1830(4): 2994-3004, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23375722

RESUMEN

BACKGROUND: Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. METHODS: Small peptides containing reactive allysine residues based on sequences of cross-linking domains of human elastin were incubated in vitro to form cross-links characteristic of mature elastin. The resultant insoluble polymeric biomaterials were studied by scanning electron microscopy. Both, the supernatants of the samples and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. RESULTS: MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally cross-linked peptides, but for the first time also tri- and tetrafunctionally cross-linked species. Thus, it was possible to identify intra- and intermolecular cross-links including allysine aldols, dehydrolysinonorleucines and dehydromerodesmosines. The formation of the tetrafunctional cross-link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. CONCLUSIONS: The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin peptides. MALDI-TOF/TOF mass spectrometry and the newly developed software PolyLinX proved suitable for sequencing of native cross-links in proteolytic digests of elastin-like biomaterials. GENERAL SIGNIFICANCE: The study provides important insight into the formation of native elastin cross-links and represents a considerable step towards the characterization of the complex cross-linking pattern of mature elastin.


Asunto(s)
Elastina/química , Secuencia de Aminoácidos , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Programas Informáticos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Pharmacol Ther ; 260: 108682, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917886

RESUMEN

The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.

16.
Biochimie ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38513823

RESUMEN

Inflammation and autoimmunity are known as central processes in many skin diseases, including psoriasis. It is therefore important to develop pre-clinical models that describe disease-related aspects to enable testing of pharmaceutical drug candidates and formulations. A widely accepted pre-clinical model of psoriasis is the imiquimod (IMQ)-induced skin inflammation mouse model, where topically applied IMQ provokes local skin inflammation. In this study, we investigated the abundance of a subset of matrix metalloproteinases (MMPs) in skin from mice with IMQ-induced skin inflammation and skin from naïve mice using targeted proteomics. Our findings reveal a significant increase in the abundance of MMP-2, MMP-7, MMP-8, and MMP-13 after treatment with IMQ compared to the control skin, while MMP-3, MMP-9, and MMP-10 were exclusively detected in the IMQ-treated skin. The increased abundance and broader representation of MMPs in the IMQ-treated skin provide valuable insight into the pathophysiology of skin inflammation in the IMQ model, adding to previous studies on cytokine levels using conventional immunochemical methods. Specifically, the changes in the MMP profiles observed in the IMQ-treated skin resemble the MMP patterns found in skin lesions of individuals with psoriasis. Ultimately, the differences in MMP abundance under IMQ-induced inflammation as compared to non-inflamed control skin can be exploited as a model to investigate drug efficacy or performance of drug delivery systems.

17.
Biochim Biophys Acta ; 1820(10): 1671-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22728886

RESUMEN

BACKGROUND: Aging and degeneration of human intervertebral disc (IVD) are associated with biochemical changes, including racemization and glycation. These changes can only be counteracted by protein turnover. Little is known about the longevity of IVD elastin in health or disease. Yet, such knowledge is important for a quantitative understanding of tissue synthesis and degradation. METHODS: We have measured the accumulation of d-Asp and pentosidine in IVD elastin. Samples representing a broad range of ages (28-82years) and degeneration grades (1-5) were analyzed. RESULTS: d/l-Asp for elastin increased linearly with age from 3.2% (early 30s) to 14.8% (early 80s) for normal tissue (grades 1-2) and from 1.7% (late 20s) to 6.0% (until the mid 50s) for degenerate tissue (grades 3-5) with accumulation rates of 16.2±3.1×10(-4) and 11.7±3.8×10(-4)year(-1), respectively; no significant difference was found between these values (p<0.05). Above the mid 50s, a decrease in d-Asp accumulation was recorded in the degenerate tissue. d-Asp accumulation correlated well with pentosidine content for elastin from healthy and degenerate tissues combined. We conclude that IVD elastin is metabolically-stable and long-lived in both healthy and degenerate human IVDs, with signs of new synthesis in the latter. The correlation of d-Asp with pentosidine content suggests that both these agents may be used as markers in the overall aging process of IVD. GENERAL SIGNIFICANCE: Accumulation of modified IVD elastin argues for its longevity and may have a negative impact on its role in disc function. Weak signs of newly synthesized molecules may act to counteract this effect in degenerate tissue.


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Ácido Aspártico/metabolismo , Elastina/metabolismo , Disco Intervertebral/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Envejecimiento/patología , Ácido Aspártico/química , Autopsia , Elastina/análisis , Elastina/química , Elastina/fisiología , Femenino , Humanos , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Longevidad/fisiología , Masculino , Persona de Mediana Edad , Técnicas de Sonda Molecular , Factores de Tiempo
18.
Biomacromolecules ; 14(12): 4278-88, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24127724

RESUMEN

Post-translational modifications play a key role in defining the biological functions of proteins. Among them, the hydroxylation of proline producing the (2S,4R)-4-hydroxyproline (Hyp) is one of the most frequent modifications observed in vertebrates, being particularly abundant in the proteins of the extracellular matrix. In collagen, hydroxylation of proline plays a critical role, conferring the correct structure and mechanical strength to collagen fibers. In elastin, the exact role of this modification is not yet understood. Here we show that Hyp-containing elastin polypeptides have flexible molecular structures, analogously to proline-containing polypeptides. In turn, the self-assembly of the elastin peptides is significantly altered by the presence of Hyp, evidencing different supramolecular structures. Also the in vitro susceptibility to protease digestion is changed. These findings give a better insight into the elastic fiber formation and degradation processes in the extracellular matrix. Furthermore, our results could contribute in defining the subtle role of proline structural variants in the folding and self-assembly of elastin-inspired peptides, helping the rational design of elastin biomaterials.


Asunto(s)
Hidroxiprolina/química , Fragmentos de Péptidos/química , Tropoelastina/química , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Humanos , Hidroxilación , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Nanofibras/química , Nanofibras/ultraestructura , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Tropoelastina/ultraestructura
19.
J Control Release ; 363: 621-640, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37820983

RESUMEN

Skin diseases are among the most common diseases in the global population and with the growth of the aging population, they represent an increasing burden to healthcare systems worldwide. Even though they are rarely life-threatening, the suffering for those affected is high due to the visibility and physical discomfort related to these diseases. Typical symptoms of skin diseases include an inflamed, swollen or itchy skin, and therefore, there is a high demand for effective therapy options. In recent years, electrospinning has attracted considerable interest in the field of drug delivery. The technique allows producing multifunctional drug-loaded fibrous patches from various natural and synthetic polymers with fiber diameters in the nano- and micrometer range, suitable for the treatment of a wide variety of skin diseases. The great potential of electrospun fiber patches not only lies in their tunable drug release properties and the possibility to entrap a variety of therapeutic compounds, but they also provide physical and mechanical protection to the impaired skin area, exhibit a high surface area, allow gas exchange, absorb exudate due to their porous structure and are cytocompatible and biodegradable. In the case of wound healing, cell adhesion is promoted due to the resemblance of the electrospun fibers to the structure of the native extracellular matrix. This review gives an overview of the potential applications of electrospun fibers in skin therapy. In addition to the treatment of bacterial, diabetic and burn wounds, focus is placed on inflammatory diseases such as atopic dermatitis and psoriasis, and therapeutic options for the treatment of skin cancer, acne vulgaris and herpes labialis are discussed. While we aim to emphasize the great potential of electrospun fiber patches for the treatment of skin diseases with this review paper, we also highlight challenges and limitations of current research in the field.


Asunto(s)
Enfermedades de la Piel , Piel , Humanos , Anciano , Cicatrización de Heridas , Enfermedades de la Piel/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química
20.
Acta Biomater ; 157: 149-161, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36526241

RESUMEN

Enzyme-responsive hydrogels, formed by step growth photopolymerization of biscysteine peptide linkers with alkene functionalized polyethylene glycol, provide interesting opportunities as biomaterials and drug delivery systems. In this study, we developed stimuli-responsive, specific, and cytocompatible hydrogels for delivery of anti-inflammatory drugs for the treatment of inflammatory skin diseases. We designed peptide linkers with optimized sensitivity towards matrix metalloproteinases, a family of proteolytic enzymes overexpressed in the extracellular matrix of the skin during inflammation. The peptide linkers were crosslinked with branched 4-arm and 8-arm polyethylene glycols by thiol-norbornene photopolymerization, leading to the formation of a hydrogel network, in which the anti-inflammatory Janus kinase inhibitor tofacitinib citrate was incorporated. The hydrogels were extensively characterized by physical properties, in vitro release studies, cytocompatibility with fibroblasts, and anti-inflammatory efficacy testing in both an atopic dermatitis-like keratinocyte assay and an activated T-cell assay. The drug release was studied after single and multiple-time exposure to matrix metalloproteinase 9 to mimic inflammatory flare-ups. Drug release was found to be triggered by matrix metalloproteinase 9 and to depend on type of crosslinker and of the polyethylene glycol polymer, due to differences in architecture and swelling behavior. Moreover, swollen hydrogels showed elastic properties similar to those of extracellular matrix proteins in the dermis. Cell studies revealed limited cytotoxicity when fibroblasts and keratinocytes were exposed to the hydrogels or their enzymatic cleavage products. Taken together, our results suggest multi-arm polyethylene glycol hydrogels as promising matrix metalloproteinase-responsive drug delivery systems, with potential in the treatment of inflammatory skin disease. STATEMENT OF SIGNIFICANCE: Smart responsive drug delivery systems such as matrix metalloproteinase-responsive hydrogels are excellent candidates for the treatment of inflammatory skin diseases including psoriasis. Their release profile can be optimized to correspond to the patient's individual disease state by tuning formulation parameters and disease-related stimuli, providing personalized treatment solutions. However, insufficient cross-linking efficiency, low matrix metalloproteinase sensitivity, and undesirable drug release kinetics remain major challenges in the development of such drug delivery systems. In this study, we address shortcomings of previous work by designing peptide linkers with optimized sensitivity towards matrix metalloproteinases and high cross-linking efficiencies. We further provide a proof-of-concept for the usability of the hydrogels in inflammatory skin conditions by employing a drug release set-up simulating inflammatory flare-ups.


Asunto(s)
Hidrogeles , Metaloproteinasa 9 de la Matriz , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Péptidos , Metaloproteinasas de la Matriz/metabolismo , Materiales Biocompatibles , Polietilenglicoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA