Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 96(1): e20230188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597489

RESUMEN

The growing increase in the fish farming sector has favored the establishment of bacterial outbreaks caused by Aeromonas hydrophila in several species. The hexane extract of Hesperozygis ringens (HEHR) (Lamiaceae) leaves increased the survival rate of silver catfish (Rhamdia quelen) experimentally infected by A. hydrophila. However, it is noteworthy that no reports have been found on the possible mechanisms of action of this extract in infected fish. This study aimed to evaluate the effect of the HEHR, administered through single immersion bath, on lipid peroxidation and antioxidant defenses in muscle and liver tissue of silver catfish challenged with A. hydrophila. The results showed that the oxidative status of silver catfish was altered, although oxidative stress was not triggered during the experiment. HEHR at 30 mg/L (HEHR30) was not characterized as a pro-oxidant agent in the presence of infection, unlike florfenicol and HEHR at 15 mg/L treatments in some cases. In short, HEHR30 provided an important increase in hepatic catalase activity, characterizing one of the possible mechanisms involved in the greater survival of fish experimentally infected by A. hydrophila. Additionally, HEHR30 did not induce lipid peroxidation, nor reduced antioxidant defenses of silver catfish infected or not by A. hydrophila.


Asunto(s)
Bagres , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Lamiaceae , Animales , Aeromonas hydrophila , Antioxidantes/farmacología , Hexanos , Inmersión , Oxidación-Reducción , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología
2.
Fish Physiol Biochem ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722480

RESUMEN

This study evaluated the use of essential oil of Ocimum gratissimum (EOOG) for anesthesia and in transport of Colossoma macropomum. Experiment 1, Test 1, anesthesia induction and recovery times were determined using different EOOG concentrations (0, 20, 50, 100, 200, 300 mg L-1), with two size classes: Juveniles I (0.86 g) and Juveniles II (11.46 g) (independent tests in a completely randomized design). Based on the results of Test 1, in Test 2 Juveniles II were exposed to EOOG concentrations: 0, 20, 100 mg L-1. Tissue samples were collected immediately after induction and 1 h post-recovery, to assess oxidative status variables. Experiment 2, Juveniles I (0.91 g) and Juveniles II (14.76 g) were submitted to transport in water with different concentrations of EOOG (0, 5, 10 mg L-1) (independent tests in a completely randomized design). The effects on oxidative status variables were evaluated. Concentrations between 50 and 200 mg L-1 EOOG can be indicated for Juveniles I, while concentrations between 50 and 100 mg L-1 EOOG for Juveniles II. The concentration of 100 mg L-1 EOOG was able to prevent oxidative damage in the liver. In Experiment 2, the concentrations of 5 and 10 mg L-1 EOOG added to the transport water caused sedation for both studied size classes of juveniles and did not cause oscillations in water quality variables nor any mortality. The concentration of 10 mg L-1 EOOG improved the oxidative status. It can be concluded that EOOG can be used for anesthesia and transport of C. macropomum.

3.
Vet Anaesth Analg ; 49(1): 104-112, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34852962

RESUMEN

OBJECTIVE: To verify the efficacy of citral in inducing sedation and anesthesia in silver catfish (Rhamdia quelen) and grass carp (Ctenopharyngodon idella) and to assess the safety of essential oil (EO) of Aloysia citriodora and citral in inducing and maintaining anesthesia in silver catfish. STUDY DESIGN: Clinical study, randomized, parallel, multi-arm with control group in target species. ANIMALS: A total of 96 juvenile and 72 adult silver catfish and 80 juvenile grass carp were used. METHODS: Silver catfish and grass carp were exposed to different concentrations of citral, 15-675 and 15-600 µL L-1, respectively, during the maximum period of 30 minutes to verify sedation and anesthesia induction and recovery times. In addition, for anesthetic induction, silver catfish were exposed to the EO of A. citriodora and citral at 225 µL L-1 for 3.5 minutes. Then, fish were transferred to an anesthesia maintenance solution at 50 µL L-1 for 10 minutes to assess hematologic and biochemical variables at 60 minutes, 2 and 6 days after treatment. RESULTS: Citral only induced sedation from 15, 25 and 40 µLL-1 in both species. Anesthesia without mortality was induced in silver catfish at 50-600 µL L-1 and grass carp at 75-450 µL L-1. At 675 and 600 µL L-1, mortality was recorded in silver catfish and grass carp, respectively. The EO of A. citriodora and citral were safe in inducing and maintaining anesthesia in silver catfish, with mean corpuscular hemoglobin concentration being the only variable that varied in relation to time and treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Citral was effective in inducing sedation and anesthesia in both species. In addition, A. citriodora EO and citral were safe in inducing and maintaining anesthesia in silver catfish. Both agents are promising substances for the development of new drugs for fish.


Asunto(s)
Anestésicos , Carpas , Bagres , Aceites Volátiles , Monoterpenos Acíclicos , Anestésicos/farmacología , Animales , Hipnóticos y Sedantes/farmacología , Palau , Verbenaceae
4.
Fish Physiol Biochem ; 48(5): 1155-1166, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35932409

RESUMEN

This study aimed to evaluate different concentrations of the essential oil of Hesperozygis ringens (EOHR) and its effects on anesthesia and transport of Oreochromis niloticus. Experiment I evaluated the concentrations of 0, 150, 300, 450, and 600 µL L-1 EOHR for times of induction and recovery from anesthesia and ventilatory frequency (VF) of O. niloticus (26 g), with 10 repetitions each in a completely randomized design. Based on the results of Experiment I, Experiment II submitted fish (25 g) to three treatments-control (clean water), ethanol (5 mL ethyl alcohol), and 600 µL L-1 EOHR-and then handling for biometry. Blood was collected 1 and 24 h after exposure and handling to analyze hematological and biochemical parameters in a completely randomized design in a factorial arrangement (3 × 2). Experiment III submitted fish (35 g) to simulated transport (4.5 h) with 0, 10, or 20 µL L-1 EOHR and determined the effects on blood variables. Concentrations of 450 and 600 µL L-1 EOHR provoked deep anesthesia in juvenile O. niloticus and provided induction and recovery times within the limits considered ideal for fish. However, this essential oil was not able to attenuate the effects of stress caused by biometric handling. EOHR was able to attenuate the effects of stress from simulated transport, with 10 µL L-1 EOHR being responsible for causing a decrease in protein, triglycerides, and cholesterol values immediately after transport of O. niloticus.


Asunto(s)
Anestésicos , Cíclidos , Aceites Volátiles , Animales , Aceites Volátiles/farmacología , Hipnóticos y Sedantes , Anestésicos/farmacología , Biometría , Etanol , Triglicéridos , Agua
5.
Microb Pathog ; 154: 104871, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33771632

RESUMEN

This study points to evaluate the effects of pre-treatment with standardized dry extract of Curcuma longa (Motore™) added to the diet (0; 250; 500; and 750 mg/kg) on oxidative stress parameters, longevity, and therapeutic success in Rhamdia quelen experimentally infected with Aeromonas hydrophila (MF 372510). After treatment, the liver and kidney were collected to determine non-enzymatic oxidative parameters such as the formation of thiobarbituric acid reactive substances (TBARS), non-protein thiols (NPSH), and quantification of reactive oxygen species (ROS) levels. Also, two enzymatic antioxidant parameters were evaluated: superoxide dismutase (SOD) and catalase (CAT) activities. The results showed an increase of ROS and TBARS levels, a depletion in NPSH, and a decrease of SOD and CAT activities in infected fish compared to control. The highest Motore™ dose minimized the deleterious effect of A. hydrophila infection improving longevity, oxidative status, and survival rate. The addition of 750 mg Motore™/kg feed is recommended for silver catfish in fish farming. Serious economic losses in Rhamdia quelen culture caused by Aeromonas hydrophila infections can be prevented by the addition of Motore™ to the diet.


Asunto(s)
Bagres , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila , Animales , Antioxidantes , Suplementos Dietéticos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/veterinaria , Estrés Oxidativo
6.
Fish Physiol Biochem ; 47(1): 135-152, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33196935

RESUMEN

This study aimed to evaluate the essential oil of Ocimum gratissimum L. (EOOG) for anesthesia and in the transport of Oreochromis niloticus. Experiment I determined the time of anesthesia induction and recovery during anesthesia of O. niloticus exposed to different concentrations of EOOG (0, 30, 90, 150, and 300 mg L-1). Based on data from Experiment I, Experiment II evaluated the effect of 0, 30, and 90 mg L-1 EOOG on blood parameters and oxidative stress immediately after anesthesia induction and 1 h after recovery. Experiment III evaluated the effect of 0, 5, and 10 mg L-1 EOOG on blood variables immediately after 4.5 h of transport of juveniles. Concentrations between 90 and 150 mg L-1 EOOG were efficient for anesthesia and recovery. The use of 90 mg L-1 of EOOG prevented an increase in plasma glucose. Other changes in blood parameters and oxidative stress are discussed. The use of 10 mg L-1 EOOG in transport increased plasma glucose and decreased hematocrit values immediately after transport. It is concluded that the use of 90 and 150 mg L-1 EOOG causes anesthesia and recovery in O. niloticus within the time intervals considered ideal. The use of 90 mg L-1 EOOG favored stable plasma glucose soon after anesthesia induction and 1 h after recovery, but caused changes in the antioxidant defense system by increasing hepatic and kidney ROS. The transport of 12 g O. niloticus for 4.5 h can be performed with concentration of 5 mg L-1 of EOOG.


Asunto(s)
Anestésicos , Cíclidos , Ocimum , Aceites Volátiles , Aceites de Plantas , Anestesia , Animales , Glucemia , Encéfalo/metabolismo , Proteínas de Peces/metabolismo , Branquias/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Hojas de la Planta , Especies Reactivas de Oxígeno , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
7.
Fish Physiol Biochem ; 47(6): 2101-2120, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34807332

RESUMEN

This study assessed the potential of eugenol and the essential oil of Lippia alba (EOLA) in providing suitable anesthetic induction and recovery times, and their consequent effects on the blood and respiratory physiology, as well as the gill architecture of an Amazonian freshwater stingray, Potamotrygon wallacei, shortly after reaching the recovery and 48 h later. Juveniles of P. wallacei were exposed to increasing concentrations of eugenol (75, 100, 125, and 150 µL L-1) and EOLA (150, 175, 200, and 225 µL L-1) in an immersion bath. Anesthetic induction was found to be faster with the use of eugenol compared to EOLA. On the other hand, the stingrays anesthetized with eugenol displayed a longer recovery time than those exposed to EOLA. The highest concentrations of eugenol caused moderate to severe histological changes in the gills. No significant changes were found for hematocrit and plasma energy metabolites in the stingrays anesthetized with all concentrations of both eugenol and EOLA shortly after reaching the recovery from the ansthesia, when compared to those recovered after 48 h. Investigations regarding the potential use of these natural anesthetics are unprecedented for freshwater stingray species, and 200 µL L-1 EOLA is recommended as the most suitable anesthetic for use in juveniles of P. wallacei.


Asunto(s)
Anestésicos , Eugenol , Lippia , Aceites Volátiles , Rajidae , Anestésicos/farmacología , Animales , Eugenol/farmacología , Agua Dulce , Lippia/química , Aceites Volátiles/farmacología
8.
Toxicol Appl Pharmacol ; 375: 64-80, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31075342

RESUMEN

Nectandra grandiflora Ness (Lauraceae) essential oil (EO) main constituent, the sesquiterpenoid (+)-dehydrofukinone (DHF), has sedative and anticonvulsant effects through GABAergic mechanisms. Other DHF-related sesquiterpenoids have been identified in the EO, such as, dehydrofukinone epoxide (DFX), eremophil-11-en-10-ol (ERM) and selin-11-en-4-α-ol (SEL). However, the neuronal effects of these compounds in mammals remain unknown. Therefore, the aim of this study was to evaluate the anxiolytic potential of the N. grandiflora EO and the isolated compounds in in mice. For this purpose, mice were administered orally with vehicle, 10, 30 or 100 mg/kg EO, DHF, DFX, ERM or SEL or 1 mg/kg diazepam. Locomotion and ethological parameters in the open field (OF) and elevated plus maze (EPM) were recorded. We also examined the effect of DFX, ERM and SEL on the membrane potential and calcium influx in synaptosomes, and the presence of the compounds in the cortical tissue using gas chromatography. EOs and isolated compounds reduced anxiety-related parameters in the EPM (open arms time and entries, end activity, head dipping) and OF (center time and entries, total rearing, unprotected rearing, sniffing, grooming) without alter ambulation or induce sedation. Flumazenil (2 mg/kg, i.p.) altered the anxiolytic-like effect of all treatments and vanished the DFX, ERM and SEL-induced changes in membrane potential. However, FMZ did not blocked the DFX-, ERM- and SEL-induced inhibition of calcium influx. Therefore, our results suggest that N. grandiflora EO and isolated compounds induced anxiolytic-like effect in mice due to positive modulation of GABAa receptors and/or inhibition of neuronal calcium influx.


Asunto(s)
Ansiedad/tratamiento farmacológico , GABAérgicos/farmacología , Lauraceae/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Sesquiterpenos/farmacología , Animales , Conducta Animal , GABAérgicos/química , Masculino , Ratones , Estructura Molecular , Actividad Motora , Aceites Volátiles/química , Aceites de Plantas/química , Análisis de Componente Principal , Sesquiterpenos/química
9.
Fish Physiol Biochem ; 45(1): 155-166, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30120603

RESUMEN

In teleost fish, stress initiates a hormone cascade along the hypothalamus-pituitary-interrenal (HPI) axis to provoke several physiological reactions in order to maintain homeostasis. In aquaculture, a number of factors induce stress in fish, such as handling and transport, and in order to reduce the consequences of this, the use of anesthetics has been an interesting alternative. Essential oil (EO) of Lippia alba is considered to be a good anesthetic; however, its distinct chemotypes have different side effects. Therefore, the present study aimed to investigate, in detail, the expression of genes involved with the HPI axis and the effects of anesthesia with the EOs of two chemotypes of L. alba (citral EO-C and linalool EO-L) on this expression in silver catfish, Rhamdia quelen. Anesthesia with the EO-C is stressful for silver catfish because there was an upregulation of the genes directly related to stress: slc6a2, crh, hsd20b, hspa12a, and hsp90. In this study, it was also possible to observe the importance of the hsd11b2 gene in the response to stress by handling. The use of EO-C as anesthetics for fish is not recommended, but, the use of OE-L is indicated for silver catfish as it does not cause major changes in the HPI axis.


Asunto(s)
Bagres/fisiología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Lippia/química , Monoterpenos/farmacología , Aceites de Plantas/farmacología , Monoterpenos Acíclicos , Anestesia/veterinaria , Anestésicos/química , Anestésicos/farmacología , Animales , Sistema Hipotálamo-Hipofisario/fisiología , Monoterpenos/química , Aceites Volátiles/farmacología , Aceites de Plantas/química
10.
Molecules ; 23(2)2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29425157

RESUMEN

Nectandra grandiflora Nees (Lauraceae) is a Brazilian native tree recognized by its durable wood and the antioxidant compounds of its leaves. Taking into account that the forest industry offers the opportunity to recover active compounds from its residues and by-products, this study identifies and underlines the potential of natural products from Nectandra grandiflora that can add value to the forest exploitation. This study shows the effect of three different extraction methods: conventional (CE), ultrasound-assisted (UAE) and microwave-assisted (MAE) on Nectandra grandiflora leaf extracts (NGLE) chemical yields, phenolic and flavonoid composition, physical characteristics as well as antioxidant and antifungal properties. Results indicate that CE achieves the highest extraction phytochemical yield (22.16%), but with similar chemical composition to that obtained by UAE and MAE. Moreover, CE also provided a superior thermal stability of NGLE. The phenolic composition of NGLE was confirmed firstly, by colorimetric assays and infrared spectra and then by chromatographic analysis, in which quercetin-3-O-rhamnoside was detected as the major compound (57.75-65.14%). Furthermore, the antioxidant capacity of the NGLE was not altered by the extraction methods, finding a high radical inhibition in all NGLE (>80% at 2 mg/mL). Regarding the antifungal activity, there was observed that NGLE possess effective bioactive compounds, which inhibit the Aspergillus niger growth.


Asunto(s)
Antifúngicos/química , Antioxidantes/química , Flavonoides/química , Fenoles/química , Fitoquímicos/química , Extractos Vegetales/química , Streptophyta/química , Antifúngicos/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Aspergillus niger/efectos de los fármacos , Fraccionamiento Químico , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Humanos , Fenoles/aislamiento & purificación , Fenoles/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Hojas de la Planta/química , Solubilidad
11.
Fish Physiol Biochem ; 44(1): 21-34, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28948452

RESUMEN

The viability using Lippia alba essential oil as an anesthetic for fish was studied, particularly with respect to physiological effects during recovery. Anesthesia of silver catfish (Rhamdia quelen) using 100 and 300 µL L-1 of two different chemotypes of L. alba essential oil (citral EO-C and linalool EO-L) prevented the increase of plasma cortisol levels caused by handling, but did not avoid alterations in energetic metabolism. Silver catfish did not have increased the levels of thiobarbituric acid reactive species in the kidney and liver during recovery after anesthesia with either EO, avoiding lipid damage. On the other hand, fish anesthetized with EO-C showed higher protein carbonylation levels, superoxide dismutase, catalase, and glutathione S-transferase activities and non-protein thiol group levels in both tissues compared to controls. Our results suggest that both oils show antioxidant capacity, but anesthesia with EO-L does not cause damage to lipids or proteins, only temporary changes, typical of physiological adjustments during recovery from anesthesia. Therefore, EO-L is an effective anesthetic for silver catfish with fewer side effects than EO-C.


Asunto(s)
Anestésicos/farmacología , Bagres , Lippia/química , Monoterpenos/farmacología , Aceites de Plantas/farmacología , Monoterpenos Acíclicos , Animales , Metabolismo Energético/efectos de los fármacos , Hidrocortisona/sangre , Monoterpenos/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Estrés Oxidativo , Aceites de Plantas/química
12.
Fish Physiol Biochem ; 44(4): 1253-1264, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29777417

RESUMEN

In aquaculture, nutrition and supplemented diets have been shown to affect broodstock reproductive performance. In this study, we investigated the effects of dietary supplementation with Cymbopogon flexuosus essential oil (CFEO) microcapsules on reproductive-related parameters in silver catfish (Rhamdia quelen) male broodfish. Adult male broodstocks were separated into three groups according to the concentrations of supplemented CFEO (0.0 = control; 1.0 or 3.0 mL per kg of diet). After 20 days under experimental conditions, the animals were euthanized and the gonads were harvested for gonadosomatic index, sperm analysis, oxidative stress, and histopathology; testosterone levels were measured in the plasma; gene expression of prl, smtl, pomca, and pomcb was assessed in the pituitary gland by real-time PCR. The results showed no alterations on reproductive parameters in R. quelen males treated with Cymbopogon flexuosus essential oil compared to the control-diet animals. In conclusion, CFEO microcapsules supplied for 20 days in the concentrations of 1.00 or 3.00 mL per kilogram of diet did not affect the reproduction criteria evaluated in this study in male silver catfish.


Asunto(s)
Bagres/fisiología , Cymbopogon/química , Dieta/veterinaria , Suplementos Dietéticos , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Reproducción , Animales , Proteínas de Peces/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos
13.
J Food Sci Technol ; 55(4): 1416-1425, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29606756

RESUMEN

This study evaluated whether the essential oil of Lippia alba (EO) used as a sedative for fish transport would increase the stability of silver catfish during ice storage. Fish were transported (6 h) with water alone (control), 30 or 40 µL/L of EO in water. After transport, fish were slaughtered and stored in ice. Data on mesophilic and psychrotrophic bacteria counts during storage did not support the evidence for the antimicrobial activity of EO. However, fish treated with EO (30 and 40 µL/L) had delayed onset of rigor mortis, delayed increase of pH after 34 days of storage, and delayed peak of hypoxanthine formation and its degradation. In addition, the demerit sensory score of EO-treated fish (30 and 40 µL/L) was lower than that of controls along the storage. Thus, the use of EO as a sedative in the water used to transport silver catfish can delay the loss of freshness and the deterioration of whole fish stored in ice.

14.
Microb Pathog ; 113: 29-33, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29038058

RESUMEN

The objective of this study was to identify and quantify the chemical constituents, as well as the antimicrobial, antibiofilm and synergistic activity with florfenicol of essential oils of Aloysia triphylla (EOAT) and Lippia alba (EOLA) against Aeromonas spp. The antimicrobial activity of EOAT and EOLA was verified by the minimum bactericidal concentration (MBC) and the action against biofilm forming and consolidated biofilm. The synergistic activity of EOAT and EOLA with florfenicol was performed by the checkerboard technique. The main components of EOAT were α-citral (39.91%), E-carveol (25.36%) and limonene (21.52%), while that of EOLA was linalool (81.64%). Aeromonas spp. isolates showed sensitivity to both essential oils with MBC between 195.3 and 3125.0 µL/mL. Two isolates were classified as non-producing, three as moderate and 16 as weak biofilm producers. The EOAT and EOLA interfered in the biofilm formation, from moderate to weak producers, but did not cause any interference in the consolidated biofilm. The EOAT and EOLA combined with florfenicol showed synergistic effect and reduced MBC. The EOAT and EOLA have potential for application as antimicrobial agents, as they interfere in the initial formation of biofilm and when combined with florfenicol, present a synergic effect with a reduction in the minimum dose of the antibiotic.


Asunto(s)
Aeromonas/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Lippia/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Verbenaceae/química , Monoterpenos Acíclicos , Aeromonas/clasificación , Biopelículas/crecimiento & desarrollo , Monoterpenos Ciclohexánicos , Ciclohexenos/farmacología , Combinación de Medicamentos , Sinergismo Farmacológico , Limoneno , Pruebas de Sensibilidad Microbiana , Monoterpenos/farmacología , Fitoquímicos/farmacología , Terpenos/farmacología , Tianfenicol/análogos & derivados , Tianfenicol/farmacología
15.
Toxicol Appl Pharmacol ; 332: 52-63, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733205

RESUMEN

(+)-Dehydrofukinone (DHF), isolated from Nectandra grandiflora (Lauraceae) essential oil, induces sedation and anesthesia by modulation of GABAa receptors. However, no study has addressed whether DHF modulates other cellular events involved in the control of cellular excitability, such as seizure behavior. Therefore, the aim of the present study was to investigate the effect of DHF on cellular excitability and seizure behavior in mice. For this purpose, we used isolated nerve terminals (synaptosomes) to examine the effect of DHF on the plasma membrane potential, the involvement of GABAa receptors and the downstream activation of Ca2+ mobilization. Finally, we performed an in vivo assay in order to verify whether DHF could impact on seizures induced by pentylenetetrazole (PTZ) in mice. The results showed that DHF induced a GABA-dependent sustained hyperpolarization, sensitive to flumazenil and absent in low-[Cl-] medium. Additionally, (1-100µM) DHF decreased KCl-evoked calcium mobilization over time in a concentration-dependent manner and this effect was prevented by flumazenil. DHF increased the latency to myoclonic jerks (10mg/kg), delayed the onset of generalized tonic-clonic seizures (10, 30 and 100mg/kg), and these effects were also blocked by the pretreatment with flumazenil. Our data indicate that DHF has anticonvulsant properties and the molecular target underlying this effect is likely to be the facilitation of GABAergic neuronal inhibition. The present study highlights the therapeutic potential of the natural compound DHF as a suppressor of neuronal excitability.


Asunto(s)
Moduladores del GABA/farmacología , Potenciales de la Membrana/efectos de los fármacos , Receptores de GABA-A/metabolismo , Convulsiones/tratamiento farmacológico , Sesquiterpenos/farmacología , Animales , Anticonvulsivantes/farmacología , Femenino , Flumazenil/farmacología , Ratones , Pentilenotetrazol , Convulsiones/inducido químicamente
16.
Fish Physiol Biochem ; 41(1): 129-38, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25403153

RESUMEN

This study investigated the effects of prolonged exposure of silver catfish (Rhamdia quelen) to the essential oil (EO) of Hesperozygis ringens. Ventilatory rate (VR), stress and metabolic indicators, energy enzyme activities, and mRNA expression of adenohypophyseal hormones were examined in specimens that were exposed for 6 h to 0 (control), 30 or 50 µL L(-1) EO of H. ringens in water. Reduction in VR was observed in response to each treatment, but no differences were found between treatments. Plasma glucose, protein, and osmolality increased in fish exposed to 50 µL L(-1). Moreover, lactate levels increased after exposure to both EO concentrations. Plasma cortisol levels were not changed by EO exposure. Fish exposed to 30 µL L(-1) EO exhibited higher glycerol-3-phosphate dehydrogenase (G3PDH) activity, while exposure to 50 µL L(-1) EO elicited an increase in glucose-6-phosphate dehydrogenase (G6PDH), fructose-biphosphatase (FBP), and 3-hydroxyacyl-CoA-dehydrogenase (HOAD) activities compared with the control group. Expression of growth hormone (GH) only decreased in fish exposed to 50 µL L(-1) EO, while somatolactin (SL) expression decreased in fish exposed to both concentrations of EO. Exposure to EO did not change prolactin expression. The results indicate that GH and SL are associated with energy reorganization in silver catfish. Fish were only slightly affected by 30 µL L(-1) EO of H. ringens, suggesting that it could be used in practices where a reduction in the movement of fish for prolonged periods is beneficial, i.e., such as during fish transportation.


Asunto(s)
Acuicultura/métodos , Bagres/fisiología , Lamiaceae/química , Aceites Volátiles/efectos adversos , Estrés Fisiológico/efectos de los fármacos , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Análisis de Varianza , Animales , Glucemia/efectos de los fármacos , Proteínas Sanguíneas/efectos de los fármacos , Cartilla de ADN/genética , Proteínas de Peces/metabolismo , Fructosa-Bifosfatasa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Glicoproteínas/metabolismo , Hormona del Crecimiento/metabolismo , Hidrocortisona/metabolismo , Concentración Osmolar , Consumo de Oxígeno/efectos de los fármacos , Hormonas Hipofisarias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Espectrofotometría/veterinaria , Estrés Fisiológico/fisiología
17.
Fish Physiol Biochem ; 40(3): 701-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24141557

RESUMEN

The anesthetic activities of the essential oils (EOs) of Hesperozygis ringens (EOHR) and Lippia alba (EOLA) and their effects in silver catfish (Rhamdia quelen) after anesthesia and recovery were investigated. Fish (32.19 ± 1.24 g) were submitted to one of the following treatments for each EO: basal group, control, or anesthesia (150, 300, or 450 µL L(-1) EO). After that the anesthesia was induced or simulated and the biometric measurements were completed, fish were transferred to anesthetic-free aquaria to allow for recovery. Fish were sampled at 0, 15, 30, 60, and 240 min after recovery. At time 0 of recovery, the ventilatory rate was lower in the groups anesthetized with either EO. In comparison with the basal group, control fish showed an increase in plasma glucose, aspartate aminotransferase (AST), and Na(+) levels and a reduction in Na(+)/K(+)-ATPase activity at 0 min of recovery. Plasma levels of ammonia and Na(+) were lower in the fish anesthetized with EOLA (450 µL L(-1)) and EOHR (all concentrations), respectively, than in the control fish. Additionally, lactate, AST, alanine aminotransferase, K(+) plasma levels, and gill Na(+)/K(+)-ATPase and H(+)-ATPase activities were higher in the fish anesthetized with either EOHR or EOLA than in the control fish. The EOs promoted slight changes in silver catfish that enabled both an adaptive response and the recovery of most of the measured parameters after 240 min regardless of concentration or EO that was used. These findings support the use of EOHR and EOLA as anesthetics for fish.


Asunto(s)
Anestesia , Bagres , Lamiaceae/química , Lippia/química , Aceites Volátiles/farmacología , Animales , Aceites Volátiles/química
18.
J Econ Entomol ; 113(4): 1810-1815, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32516369

RESUMEN

The stable fly, Stomoxys calcitrans (Linnaeus 1758), is a hematophagous fly responsible for causing loss of performance in horses, causing losses in cattle productivity, and impacting the animals' health through the spread of pathogenic microorganisms. The objective of this work was to investigate the insecticidal activity of essential oil obtained from Melaleuca alternifolia (Cheel), presenting high 1,8-cineole content, against S. calcitrans adults. Insecticidal activity was determined using surface application methods and exposure to oil impregnated paper. It was observed that treatments at 25 and 50 µg/cm2 (P < 0.05) present fumigant activity through exposure to the impregnated paper, and in the first 15 min of exposure, the mortality rates obtained for these treatments were, respectively (96.6 ± 3.3% and 100%), equivalent to the positive control. Using the superficial application method, the only treatment concentration presenting adulticidal action was 5% (w/v) (P < 0.05). Respective toxicities LC50 (%, w/v) and LC80 for the impregnated paper method were 1.06 ± 0.02 and 1.47 ± 0.17; for the superficial application method, they were 3.82 ± 0.65 and 5.53 ± 0.74. As demonstrated, M. alternifolia essential oil presents adulticidal potential against S. calcitrans.


Asunto(s)
Melaleuca , Muscidae , Myrtaceae , Myrtales , Aceites Volátiles , Animales , Bovinos , Eucaliptol , Caballos
19.
Neurochem Res ; 34(5): 973-83, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18853256

RESUMEN

Considering the important role of oxidative stress in the pathogenesis of several neurological diseases, and the growing evidence of the presence of compounds with antioxidant properties in the plant extracts, the aim of the present study was to investigate the antioxidant capacity of three plants used in Brazil to treat neurological disorders: Melissa officinalis, Matricaria recutita and Cymbopogon citratus. The antioxidant effect of phenolic compounds commonly found in plant extracts, namely, quercetin, gallic acid, quercitrin and rutin was also examined for comparative purposes. Cerebral lipid peroxidation (assessed by TBARS) was induced by iron sulfate (10 microM), sodium nitroprusside (5 microM) or 3-nitropropionic acid (2 mM). Free radical scavenger properties and the chemical composition of plant extracts were assessed by 1'-1' Diphenyl-2' picrylhydrazyl (DPPH) method and by Thin Layer Chromatography (TLC), respectively. M. officinalis aqueous extract caused the highest decrease in TBARS production induced by all tested pro-oxidants. In the DPPH assay, M. officinalis presented also the best antioxidant effect, but, in this case, the antioxidant potencies were similar for the aqueous, methanolic and ethanolic extracts. Among the purified compounds, quercetin had the highest antioxidant activity followed by gallic acid, quercitrin and rutin. In this work, we have demonstrated that the plant extracts could protect against oxidative damage induced by various pro-oxidant agents that induce lipid peroxidation by different process. Thus, plant extracts could inhibit the generation of early chemical reactive species that subsequently initiate lipid peroxidation or, alternatively, they could block a common final pathway in the process of polyunsaturated fatty acids peroxidation. Our study indicates that M. officinalis could be considered an effective agent in the prevention of various neurological diseases associated with oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Cymbopogon/química , Melissa/química , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Compuestos Ferrosos/farmacología , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Ácido Gálico/farmacología , Técnicas In Vitro , Masculino , Nitrocompuestos/farmacología , Nitroprusiato/farmacología , Fenoles/análisis , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Propionatos/farmacología , Quercetina/análogos & derivados , Quercetina/farmacología , Ratas , Ratas Wistar , Rutina/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
20.
Front Physiol ; 10: 785, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281264

RESUMEN

In fish, stressful events initiate a hormone cascade along the hypothalamus-pituitary-interrenal and hypothalamus-sympathetic-chromaffin (HSC) axis to evoke several physiological reactions in order to orchestrate and maintain homeostasis. Several biotic and abiotic factors, as well as aquaculture procedures (handling, transport, or stocking density), activated stress system inducing negative effects on different physiological processes in fish (growth, reproduction, and immunity). In order to reduce these consequences, the use of essential oils (EOs) derived from plants has been the focus of aquaculture studies due to their diverse properties (e.g., anesthetic, antioxidant, and antimicrobial), which have been shown to reduce biochemical and endocrine alterations and, consequently, to improve the welfare status. Recently, several studies have shown that biogenic compounds isolated from different EOs present excellent biological activities, as well as the nanoencapsulated form of these EOs may potentiate their effects. Overall, EOs presented less side effects than synthetic compounds, but their stress-reducing efficacy is related to their chemical composition, concentration or chemotype used. In addition, their species-specific actions must be clearly established since they can act as stressors by themselves if their concentrations and chemotypes used are not suitable. For this reason, it is necessary to assess the effect of these natural compound mixtures in different fish species, from marine to freshwater, in order to find the ideal concentration range and the way for their administration to obtain the desired biological activity, without any undesired side effects. In this review, the main findings regarding the use of different EOs as stress reducers will be presented to highlight the most important issues related to their use to improve fish welfare in aquaculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA