Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chem Rev ; 123(5): 1925-2015, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36724185

RESUMEN

Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.

2.
Biomacromolecules ; 22(6): 2702-2717, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34060815

RESUMEN

When cellulose nanocrystals (CNCs) are isolated from cellulose microfibrils, the parallel arrangement of the cellulose chains in the crystalline domains is retained so that all reducing end-groups (REGs) point to one crystallite end. This permits the selective chemical modification of one end of the CNCs. In this study, two reaction pathways are compared to selectively attach atom-transfer radical polymerization (ATRP) initiators to the REGs of CNCs, using reductive amination. This modification further enabled the site-specific grafting of the anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS) from the CNCs. Different analytical methods, including colorimetry and solution-state NMR analysis, were combined to confirm the REG-modification with ATRP-initiators and PSS. The achieved grafting yield was low due to either a limited conversion of the CNC REGs or side reactions on the polymerization initiator during the reductive amination. The end-tethered CNCs were easy to redisperse in water after freeze-drying, and the shear birefringence of colloidal suspensions is maintained after this process.


Asunto(s)
Celulosa , Nanopartículas , Polimerizacion , Agua
3.
Angew Chem Int Ed Engl ; 60(1): 66-87, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32329947

RESUMEN

Native plant cellulose has an intrinsic supramolecular structure. Consequently, it can be isolated as nanocellulose species, which can be utilized as building blocks for renewable nanomaterials. The structure of cellulose also permits its end-wise modification, i.e., chemical reactions exclusively on one end of a cellulose chain or a nanocellulose particle. The premises for end-wise modification have been known for decades. Nevertheless, different approaches for the reactions have emerged only recently, because of formidable synthetic and analytical challenges associated with the issue, including the adverse reactivity of the cellulose reducing end and the low abundance of newly introduced functionalities. This Review gives a full account of the scientific underpinnings and challenges related to end-wise modification of cellulose nanocrystals. Furthermore, we present how the chemical modification of cellulose nanocrystal ends may be applied to directed assembly, resulting in numerous possibilities for the construction of new materials, such as responsive liquid crystal templates and composites with tailored interactions.

4.
Chem Commun (Camb) ; 59(61): 9408-9411, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37436128

RESUMEN

The reaction of reducing end groups in cellulose nanocrystals with dodecylamine was examined. Using a direct-dissolution solution-state NMR protocol, the regioselective formation of glucosylamines was shown. This provides an elegant approach to sustainably functionalize these bio-based nanomaterials, that may not require further reduction to more stable secondary amines.

5.
Nat Protoc ; 18(7): 2084-2123, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37237027

RESUMEN

Owing to its high sustainable production capacity, cellulose represents a valuable feedstock for the development of more sustainable alternatives to currently used fossil fuel-based materials. Chemical analysis of cellulose remains challenging, and analytical techniques have not advanced as fast as the development of the proposed materials science applications. Crystalline cellulosic materials are insoluble in most solvents, which restricts direct analytical techniques to lower-resolution solid-state spectroscopy, destructive indirect procedures or to 'old-school' derivatization protocols. While investigating their use for biomass valorization, tetralkylphosphonium ionic liquids (ILs) exhibited advantageous properties for direct solution-state nuclear magnetic resonance (NMR) analysis of crystalline cellulose. After screening and optimization, the IL tetra-n-butylphosphonium acetate [P4444][OAc], diluted with dimethyl sulfoxide-d6, was found to be the most promising partly deuterated solvent system for high-resolution solution-state NMR. The solvent system has been used for the measurement of both 1D and 2D experiments for a wide substrate scope, with excellent spectral quality and signal-to-noise, all with modest collection times. The procedure initially describes the scalable syntheses of an IL, in 24-72 h, of sufficient purity, yielding a stock electrolyte solution. The dissolution of cellulosic materials and preparation of NMR samples is presented, with pretreatment, concentration and dissolution time recommendations for different sample types. Also included is a set of recommended 1D and 2D NMR experiments with parameters optimized for an in-depth structural characterization of cellulosic materials. The time required for full characterization varies between a few hours and several days.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Solubilidad , Celulosa/química , Solventes/química , Espectroscopía de Resonancia Magnética , Electrólitos/química
6.
J Mater Chem A Mater ; 10(44): 23413-23432, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36438677

RESUMEN

Maximizing the benefits of nanomaterials from biomass requires unique considerations associated with their native chemical and physical structure. Both cellulose nanofibrils and nanocrystals are extracted from cellulose fibers via a top-down approach and have significantly advanced materials chemistry and set new benchmarks in the last decade. One major challenge has been to prepare defined and selectively modified nanocelluloses, which would, e.g., allow optimal particle interactions and thereby further improve the properties of processed materials. At the molecular and crystallite level, the surface of nanocelluloses offers an alternating chemical structure and functional groups of different reactivity, enabling straightforward avenues towards chemically anisotropic and molecularly patterned nanoparticles via spatioselective chemical modification. In this review, we will explain the influence and role of the multiscale hierarchy of cellulose fibers in chemical modifications, and critically discuss recent advances in selective surface chemistry of nanocelluloses. Finally, we will demonstrate the potential of those chemically anisotropic nanocelluloses in materials science and discuss challenges and opportunities in this field.

7.
Adv Mater ; 33(3): e2004349, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33289188

RESUMEN

In the effort toward sustainable advanced functional materials, nanocelluloses have attracted extensive recent attention. Nanocelluloses range from rod-like highly crystalline cellulose nanocrystals to longer and more entangled cellulose nanofibers, earlier denoted also as microfibrillated celluloses and bacterial cellulose. In recent years, they have spurred research toward a wide range of applications, ranging from nanocomposites, viscosity modifiers, films, barrier layers, fibers, structural color, gels, aerogels and foams, and energy applications, until filtering membranes, to name a few. Still, nanocelluloses continue to show surprisingly high challenges to master their interactions and tailorability to allow well-controlled assemblies for functional materials. Rather than trying to review the already extensive nanocellulose literature at large, here selected aspects of the recent progress are the focus. Water interactions, which are central for processing for the functional properties, are discussed first. Then advanced hybrid gels toward (multi)stimuli responses, shape-memory materials, self-healing, adhesion and gluing, biological scaffolding, and forensic applications are discussed. Finally, composite fibers are discussed, as well as nanocellulose as a strategy for improvement of photosynthesis-based chemicals production. In summary, selected perspectives toward new directions for sustainable high-tech functional materials science based on nanocelluloses are described.


Asunto(s)
Biomimética/métodos , Celulosa/química , Nanoestructuras , Nanotecnología/métodos , Animales , Humanos
8.
ACS Macro Lett ; 8(12): 1642-1647, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-35619387

RESUMEN

Herein, we demonstrate an effective approach toward functionalization of cellulose nanocrystal (CNC) reducing ends by means of a Knoevenagel condensation reaction with a reactive ß-diketone (acetylacetone). The end-wise modification was elucidated by advanced NMR analysis, which was facilitated by dissolving the CNCs in ionic liquid electrolyte and by the concomitant assignment of a model compound derived from d-cellobiose. The diffusion-edited 1H experiment afforded a simple method to identify the assigned model resonances in the reducing end-modified CNCs. The condensations can be carried out in aqueous bicarbonate solutions, avoiding the use of hazardous solvents. Under these preliminary aqueous conditions, end-group conversion of up to 12.5% could be confirmed. These results demonstrate the potential of ß-diketone chemistry and the Knoevenagel condensation for functionalizing cellulose reducing ends. Application of this liquid-state NMR method for confirming and quantifying reducing end conversion is also shown to be invaluable. Extension of this chemistry to other 1,3-dicarbonyl compounds and solvation conditions should allow for the topochemical and (axially) chirotopic installation of functional moieties to CNCs, paving the way to asymmetric cellulose-based nanomaterials with unique properties.

9.
Int J Nanomedicine ; 13: 4881-4894, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30214195

RESUMEN

PURPOSE: In this work, low-molecular-weight sulfoethyl chitosan (SECS) was used as a model template for the generation of silver core-shell nanoparticles with high potential as anticoagulants for medical applications. MATERIALS AND METHODS: SECS were synthesized by two reaction pathways, namely Michael addition and a nucleophilic substitution with sodium vinylsulfonate or sodium 2-bromoethanesulfonate (NaBES). Subsequently, these derivatives were used as reducing and capping agents for silver nanoparticles in a microwave-assisted reaction. The formed silver-chitosan core-shell particles were further surveyed in terms of their anticoagulant action by different coagulation assays focusing on the inhibition of either thrombin or cofactor Xa. RESULTS: In-depth characterization revealed a sulfoalkylation of chitosan mainly on its sterically favored O6-position. Moreover, comparably high average degrees of substitution with sulfoethyl groups (DSSE) of up to 1.05 were realized in reactions with NaBES. The harsh reaction conditions led to significant chain degradation and consequently, SECS exhibits masses of <50 kDa. Throughout the following microwave reaction, stable nanoparticles were obtained only from highly substituted products because they provide a sufficient charge density that prevented particles from aggregation. High-resolution transmission electron microscopy images reveal that the silver core (diameter ~8 nm) is surrounded by a 1-2 nm thick SECS layer. These core-shell particles and the SECS itself exhibit an inhibiting activity, especially on cofactor Xa. CONCLUSION: This interesting model system enabled the investigation of structure-property correlations in the course of nanoparticle formation and anticoagulant activity of SECS and may lead to completely new anticoagulants on the basis of chitosan-capped nanoparticles.


Asunto(s)
Alcanosulfonatos/química , Anticoagulantes/farmacología , Quitosano/farmacología , Nanopartículas del Metal/administración & dosificación , Plata/química , Anticoagulantes/química , Quitosano/química , Humanos , Nanopartículas del Metal/química , Peso Molecular , Tiempo de Tromboplastina Parcial , Tiempo de Protrombina
10.
Carbohydr Polym ; 161: 82-89, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28189249

RESUMEN

In this issue, different chemical (alkaline and sulfite pulping, ozonolysis) and mechanical (vibratory ball milling) pre-treatments were utilized for activating wheat straw and beech sawdust prior to carboxymethylation. Detailed analysis by a range of methods, including Klason-lignin, cellulose and hemicellulose quantification, Powder-X-ray diffraction (PXRD) and attenuated total reflection (ATR) IR spectroscopy, enabled the investigation of material alterations. Subsequently, carboxymethylation was carried out with both untreated and activated materials, allowing the evaluation of activation steps by determining degrees of substitution with carboxymethyl groups (DSCM). Moreover, carboxymethylation conditions were optimized, realizing high DSCM of up to 1.05. Results further revealed that ball milling enhanced the subsequent conversion; whereas chemical pre-treatments did not effectively increase material accessibilities. Further studies on chemically untreated materials emphasized that a highly reactive surface was already generated in the course of the carboxymethylation, inter alia through the concomitant dissolution of matrix components.


Asunto(s)
Lignina/química , Lignina/metabolismo , Triticum/química , Celulosa/análisis , Lignina/análisis , Metilación , Difracción de Rayos X
11.
Carbohydr Polym ; 142: 56-62, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-26917374

RESUMEN

The synthesis and characterization of novel cellulose sulfate derivatives was reported. Various cellulose ethers were prepared in a homogeneous reaction with common sulfating agents. The received product possess different properties in dependence on the reaction conditions like sulfating agent, solvent, reaction time and reaction temperature. The cellulose ether sulfates are all soluble in water, they rheological behavior could be determined by viscosity measurements and the determination of the sulfur content by elemental analysis lead to a resulting degree of substitution ascribed to sulfate groups (DSSul) of the product. A wide range of products from DSSul 0.1 to DSSul 2.7 will be obtained. Furthermore the cellulose sulfate ethers could be characterized by Raman spectroscopy.


Asunto(s)
Celulosa/análogos & derivados , Éteres/síntesis química , Celulosa/síntesis química , Celulosa/química , Éteres/química , Solubilidad , Espectrometría Raman , Viscosidad , Agua/química
12.
J Exp Biol ; 209(Pt 2): 353-63, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16391357

RESUMEN

The interplay between antioxidants, heat shock proteins and hypoxic signaling is supposed to be important for passive survival of critical temperature stress, e.g. during unfavorable conditions in hot summers. We investigated the effect of mild (18 degrees C), critical (22 degrees C) and severe (26 degrees C) experimental heat stress, assumed to induce different degrees of functional hypoxia, as well as the effect of recovery following heat stress on these parameters in liver samples of the common eelpout Zoarces viviparus. Upon heat exposure to critical and higher temperatures we found an increase in oxidative damage markers such as TBARS (thiobarbituric reactive substances) and a more oxidized cellular redox potential, combined with reduced activities of the antioxidant enzyme superoxide dismutase at 26 degrees C. Together, these point to higher oxidative stress levels during hyperthermia. In a recovery-time series, heat-induced hypoxia and subsequent reoxygenation upon return of the fishes to 12 degrees C led to increased protein oxidation and chemiluminescence rates within the first 12 h of recovery, therein resembling ischemia/reperfusion injury in mammals. HSP70 levels were found to be only slightly elevated after recovery from sub-lethal heat stress, indicating minor importance of the heat shock response in this species. The DNA binding activity of the hypoxia-inducible transcription factor (HIF-1) was elevated only during mild heat exposure (18 degrees C), but appeared impaired at more severe heat stress. We suppose that the more oxidized redox state during extreme heat may interfere with the hypoxic signaling response.


Asunto(s)
Calor/efectos adversos , Estrés Oxidativo/fisiología , Perciformes/fisiología , Animales , Western Blotting , Ensayo de Cambio de Movilidad Electroforética , Proteínas HSP70 de Choque Térmico/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Mar del Norte , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
13.
Comp Biochem Physiol A Mol Integr Physiol ; 143(4): 494-503, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16488636

RESUMEN

Effects of acute cold exposure (at 1 degrees C and 5 degrees C) on tissue redox state and oxidative stress parameters, as well as the onset of hypoxic signaling were investigated in the North Sea eelpout, Zoarces viviparus. Activation of the transcription factor HIF-1 (hypoxia inducible factor) was detected in liver samples after acute cold exposure. At this temperature the cellular redox milieu was significantly reduced (below -270 mV) as compared to controls (-250 to -267 mV). Increased levels of oxidative stress parameters (TBARS and protein carbonyls) were observed mainly during recovery at control temperature (12 degrees C). This increase in oxidative stress parameters, in spite of maintained antioxidant capacity, indicates that acute cold stress and recovery mimic ischemia/reperfusion events as found in mammals. Notably the non-enzymatic antioxidant defense (e.g. glutathione) may play an important role for eelpout ROS scavenging capacity under cold stress.


Asunto(s)
ADN/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Estrés Oxidativo , Perciformes/fisiología , Animales , Antioxidantes/metabolismo , Conducta Animal , Frío , Factor 1 Inducible por Hipoxia/genética , Hígado/metabolismo , Mar del Norte , Transducción de Señal , Estrés Fisiológico , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA