Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Parasitol Res ; 123(6): 237, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856825

RESUMEN

Mastophorus muris (Gmelin, 1790) is a globally distributed parasitic nematode of broad range mammals. The taxonomy within the genus Mastophorus and the cryptic diversity among the genus are controversial among taxonomists. This study provides a detailed morphological description of M. muris from Mus musculus combined with a molecular phylogenetic approach. Moreover, descriptions and molecular data of M. muris from non-Mus rodents and wildcats complement our findings and together provide new insights into their taxonomy. The analysis of M. muris was based on light microscopy and scanning electron microscopy. The morphological description focused on the dentition pattern of the two trilobed pseudolabia. Additionally, we described the position of the vulva, arrangement of caudal pairs of papillae, spicules and measured specimens from both sexes and the eggs. For the molecular phylogenetic approach, we amplified the small subunit ribosomal RNA gene and the internal transcribed spacer, and the cytochrome c oxidase subunit 1. Mastophorus morphotypes based on dentition patterns and phylogenetic clustering indicate a subdivision of the genus in agreement with their host. We recognize two groups without a change to formal taxonomy: One group including those specimens infecting Mus musculus, and the second group including organisms infecting non-Mus rodents. Our genetic and morphological data shed light into the cryptic diversity within the genus Mastopohorus. We identified two host-associated groups of M. muris. The described morphotypes and genotypes of M. muris allow a consistent distinction between host-associated parasites.


Asunto(s)
Microscopía Electrónica de Rastreo , Filogenia , Animales , Femenino , Masculino , Ratones , Spiruroidea/clasificación , Spiruroidea/genética , Spiruroidea/anatomía & histología , Spiruroidea/aislamiento & purificación , Spiruroidea/ultraestructura , Complejo IV de Transporte de Electrones/genética , Variación Genética , Análisis de Secuencia de ADN , Microscopía , ADN de Helmintos/genética , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , Análisis por Conglomerados , Datos de Secuencia Molecular
2.
J Evol Biol ; 33(4): 435-448, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31834960

RESUMEN

Genetic diversity in animal immune systems is usually beneficial. In hybrid recombinants, this is less clear, as the immune system could also be impacted by genetic conflicts. In the European house mouse hybrid zone, the long-standing impression that hybrid mice are more highly parasitized and less fit than parentals persists despite the findings of recent studies. Working across a novel transect, we assessed infections by intracellular protozoans, Eimeria spp., and infections by extracellular macroparasites, pinworms. For Eimeria, we found lower intensities in hybrid hosts than in parental mice but no evidence of lowered probability of infection or increased mortality in the centre of the hybrid zone. This means ecological factors are very unlikely to be responsible for the reduced load of infected hybrids. Focusing on parasite intensity (load in infected hosts), we also corroborated reduced pinworm loads reported for hybrid mice in previous studies. We conclude that intensity of diverse parasites, including the previously unstudied Eimeria, is reduced in hybrid mice compared to parental subspecies. We suggest caution in extrapolating this to differences in hybrid host fitness in the absence of, for example, evidence for a link between parasitemia and health.


Asunto(s)
Coccidiosis/veterinaria , Eimeria/fisiología , Interacciones Huésped-Parásitos/genética , Hibridación Genética , Ratones/parasitología , Animales , Coccidiosis/mortalidad , Femenino , Masculino , Ratones/genética , Carga de Parásitos
3.
BMC Genomics ; 18(1): 686, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28870168

RESUMEN

BACKGROUND: Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. RESULTS: We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. CONCLUSION: We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing it to coevolve with its host.


Asunto(s)
Coccidios/inmunología , Coccidios/parasitología , Eimeria/genética , Eimeria/fisiología , Interacciones Huésped-Parásitos , Análisis de Secuencia de ARN , Eimeria/crecimiento & desarrollo , Evolución Molecular , Perfilación de la Expresión Génica , Reproducción Asexuada/genética , Esporozoítos/genética
4.
BMC Genomics ; 15: 696, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25142335

RESUMEN

BACKGROUND: The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host. RESULTS: The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria. CONCLUSIONS: Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.


Asunto(s)
Eimeria/genética , Genoma de Protozoos , Interacciones Huésped-Parásitos/genética , Parásitos/genética , Animales , Antígenos de Superficie/metabolismo , Composición de Base/genética , Secuencia de Bases , Mapeo Cromosómico , Análisis por Conglomerados , Coccidiosis/parasitología , Eimeria/crecimiento & desarrollo , Eimeria/metabolismo , Femenino , Ontología de Genes , Tamaño del Genoma , Humanos , Estadios del Ciclo de Vida , Ratones , Anotación de Secuencia Molecular , Familia de Multigenes , Sistemas de Lectura Abierta/genética , Parásitos/crecimiento & desarrollo , Parásitos/metabolismo , Filogenia , Proteoma/metabolismo
5.
Sci Total Environ ; 936: 173355, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38796016

RESUMEN

Pathogens often occur at different prevalence along environmental gradients. This is of particular importance for gradients of anthropogenic impact such as rural-urban transitions presenting a changing interface between humans and wildlife. The assembly of parasite communities is affected by both the external environmental conditions and individual host characteristics. Hosts with low body weight (smaller individuals or animals with poor body condition) might be more susceptible to infection. Furthermore, parasites' mode of transmission might affect their occurrence: rural environments with better availability of intermediate hosts might favour trophic transmission, while urban environments, typically with dense definitive host populations, might favour direct transmission. We here study helminth communities (141 intestinal samples) within the red fox (Vulpes vulpes), a synanthropic host, using DNA metabarcoding of multiple marker genes. We analysed the effect of urbanisation, seasonality and host-intrinsic (weight, sex) variables on helminth communities. Helminth species richness increased in foxes with lower body weight and in winter and spring. Season and urbanisation, however, had strong effects on the community composition, i.e., on the identity of the detected species. Surprisingly, transmission in two-host life cycles (trophic transmission) was more pronounced in urban Berlin than in rural Brandenburg. This disagrees with the prevailing hypothesis that trophically transmitted helminths are less prevalent in urban areas than in rural areas. Generally, co-infestations with multiple helminths and high infection intensity are associated with lighter (younger, smaller or low body condition) animals. Both host-intrinsic traits and environmental drivers together shape parasite community composition and turnover along urban-rural gradients.


Asunto(s)
Zorros , Estaciones del Año , Animales , Peso Corporal , Urbanización , Helmintos , Helmintiasis Animal/epidemiología , Interacciones Huésped-Parásitos
6.
ISME Commun ; 4(1): ycae053, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38800129

RESUMEN

Antibiotic resistance is a priority public health problem resulting from eco-evolutionary dynamics within microbial communities and their interaction at a mammalian host interface or geographical scale. The links between mammalian host genetics, bacterial gut community, and antimicrobial resistance gene (ARG) content must be better understood in natural populations inhabiting heterogeneous environments. Hybridization, the interbreeding of genetically divergent populations, influences different components of the gut microbial communities. However, its impact on bacterial traits such as antibiotic resistance is unknown. Here, we present that hybridization might shape bacterial communities and ARG occurrence. We used amplicon sequencing to study the gut microbiome and to predict ARG composition in natural populations of house mice (Mus musculus). We compared gastrointestinal bacterial and ARG diversity, composition, and abundance across a gradient of pure and hybrid genotypes in the European House Mouse Hybrid Zone. We observed an increased overall predicted richness of ARG in hybrid mice. We found bacteria-ARG interactions by their co-abundance and detected phenotypes of extreme abundances in hybrid mice at the level of specific bacterial taxa and ARGs, mainly multidrug resistance genes. Our work suggests that mammalian host genetic variation impacts the gut microbiome and chromosomal ARGs. However, it raises further questions on how the mammalian host genetics impact ARGs via microbiome dynamics or environmental covariates.

7.
BMC Evol Biol ; 13: 78, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23566258

RESUMEN

BACKGROUND: Anguillicola crassus, a swim bladder nematode naturally parasitizing the Japanese eel, was introduced about 30 years ago from East Asia into Europe where it colonized almost all populations of the European eel. We conducted a common garden experiment under a reciprocal transfer design infecting both European and Japanese eels with populations of A. crassus from Germany, Poland and Taiwan. We tested, whether differences in infectivity, developmental dynamics and reproductive output between the European and Asian parasite populations occur while harboured in the specimens of native and colonized eel host, and if these differences are genetically based or are plastic responses to the new environment. RESULTS: Under common garden conditions an evolutionary change in the both European parasite populations of A. crassus compared with their Taiwanese conspecifics was observed for infectivity and developmental dynamics, but not for reproductive output. When infecting the European eel, current European populations of the parasite were less infective and developed faster than their Taiwanese conspecifics. In the reciprocally infected Japanese eel the genetically induced differences between the parasite strains were less apparent than in the European eel but higher infectivity, faster development and higher larval mortality of the European parasite populations could be inferred. CONCLUSIONS: The differences in infectivity and developmental dynamics between European and Taiwanese populations of A. crassus found in our study suggest rapid genetic divergence of this parasite after a successful host switch in Europe.


Asunto(s)
Sacos Aéreos/parasitología , Anguilla , Evolución Biológica , Dracunculoidea/genética , Enfermedades de los Peces/parasitología , Animales , Dracunculoidea/patogenicidad , Dracunculoidea/fisiología , Aptitud Genética , Especificidad del Huésped , Reproducción
8.
BMC Genomics ; 14: 87, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23394720

RESUMEN

BACKGROUND: Anguillicola crassus is an economically and ecologically important parasitic nematode of eels. The native range of A. crassus is in East Asia, where it infects Anguilla japonica, the Japanese eel. A. crassus was introduced into European eels, Anguilla anguilla, 30 years ago. The parasite is more pathogenic in its new host than in its native one, and is thought to threaten the endangered An. anguilla across its range. The molecular bases for the increased pathogenicity of the nematodes in their new hosts is not known. RESULTS: A reference transcriptome was assembled for A. crassus from Roche 454 pyrosequencing data. Raw reads (756,363 total) from nematodes from An. japonica and An. anguilla hosts were filtered for likely host contaminants and ribosomal RNAs. The remaining 353,055 reads were assembled into 11,372 contigs of a high confidence assembly (spanning 6.6 Mb) and an additional 21,153 singletons and contigs of a lower confidence assembly (spanning an additional 6.2 Mb). Roughly 55% of the high confidence assembly contigs were annotated with domain- or protein sequence similarity derived functional information. Sequences conserved only in nematodes, or unique to A. crassus were more likely to have secretory signal peptides. Thousands of high quality single nucleotide polymorphisms were identified, and coding polymorphism was correlated with differential expression between individual nematodes. Transcripts identified as being under positive selection were enriched in peptidases. Enzymes involved in energy metabolism were enriched in the set of genes differentially expressed between European and Asian A. crassus. CONCLUSIONS: The reference transcriptome of A. crassus is of high quality, and will serve as a basis for future work on the invasion biology of this important parasite. The polymorphisms identified will provide a key tool set for analysis of population structure and identification of genes likely to be involved in increased pathogenicity in European eel hosts. The identification of peptidases under positive selection is a first step in this programme.


Asunto(s)
Sacos Aéreos/parasitología , Dracunculoidea/genética , Genes de Helminto , Transcriptoma , Animales , Mapeo Contig , Dracunculoidea/clasificación , Dracunculoidea/metabolismo , Metabolismo Energético/genética , Femenino , Especies Introducidas , Masculino , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Filogenia , Polimorfismo de Nucleótido Simple , Señales de Clasificación de Proteína/genética , Análisis de Secuencia de ARN
9.
Parasit Vectors ; 16(1): 204, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330545

RESUMEN

BACKGROUND: Quantifying infection intensity is a common goal in parasitological studies. We have previously shown that the amount of parasite DNA in faecal samples can be a biologically meaningful measure of infection intensity, even if it does not agree well with complementary counts of transmission stages (oocysts in the case of Coccidia). Parasite DNA can be quantified at relatively high throughput using quantitative polymerase chain reaction (qPCR), but amplification needs a high specificity and does not simultaneously distinguish between parasite species. Counting of amplified sequence variants (ASVs) from high-throughput marker gene sequencing using a relatively universal primer pair has the potential to distinguish between closely related co-infecting taxa and to uncover the community diversity, thus being both more specific and more open-ended. METHODS: We here compare qPCR to the sequencing-based amplification using standard PCR and a microfluidics-based PCR to quantify the unicellular parasite Eimeria in experimentally infected mice. We use multiple amplicons to differentially quantify Eimeria spp. in a natural house mouse population. RESULTS: We show that sequencing-based quantification has high accuracy. Using a combination of phylogenetic analysis and the co-occurrence network, we distinguish three Eimeria species in naturally infected mice based on multiple marker regions and genes. We investigate geographical and host-related effects on Eimeria spp. community composition and find, as expected, prevalence to be largely explained by sampling locality (farm). Controlling for this effect, the novel approach allowed us to find body condition of mice to be negatively associated with Eimeria spp. abundance. CONCLUSIONS: We conclude that amplicon sequencing provides the underused potential for species distinction and simultaneous quantification of parasites in faecal material. The method allowed us to detect a negative effect of Eimeria infection on the body condition of mice in the natural environment.


Asunto(s)
Coccidiosis , Eimeria , Parásitos , Animales , Ratones , Eimeria/genética , Coccidiosis/diagnóstico , Coccidiosis/veterinaria , Coccidiosis/epidemiología , Roedores , Filogenia
10.
BMC Evol Biol ; 12: 60, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22559142

RESUMEN

BACKGROUND: Anguillicolidae Yamaguti, 1935 is a family of parasitic nematode infecting fresh-water eels of the genus Anguilla, comprising five species in the genera Anguillicola and Anguillicoloides. Anguillicoloides crassus is of particular importance, as it has recently spread from its endemic range in the Eastern Pacific to Europe and North America, where it poses a significant threat to new, naïve hosts such as the economic important eel species Anguilla anguilla and Anguilla rostrata. The Anguillicolidae are therefore all potentially invasive taxa, but the relationships of the described species remain unclear. Anguillicolidae is part of Spirurina, a diverse clade made up of only animal parasites, but placement of the family within Spirurina is based on limited data. RESULTS: We generated an extensive DNA sequence dataset from three loci (the 5' one-third of the nuclear small subunit ribosomal RNA, the D2-D3 region of the nuclear large subunit ribosomal RNA and the 5' half of the mitochondrial cytochrome c oxidase I gene) for the five species of Anguillicolidae and used this to investigate specific and generic boundaries within the family, and the relationship of Anguillicolidae to other spirurine nematodes. Neither nuclear nor mitochondrial sequences supported monophyly of Anguillicoloides. Genetic diversity within the African species Anguillicoloides papernai was suggestive of cryptic taxa, as was the finding of distinct lineages of Anguillicoloides novaezelandiae in New Zealand and Tasmania. Phylogenetic analysis of the Spirurina grouped the Anguillicolidae together with members of the Gnathostomatidae and Seuratidae. CONCLUSIONS: The Anguillicolidae is part of a complex radiation of parasitic nematodes of vertebrates with wide host diversity (chondrichthyes, teleosts, squamates and mammals), most closely related to other marine vertebrate parasites that also have complex life cycles. Molecular analyses do not support the recent division of Anguillicolidae into two genera. The described species may hide cryptic taxa, identified here by DNA taxonomy, and this DNA barcoding approach may assist in tracking species invasions. The propensity for host switching, and thus the potential for invasive behaviour, is found in A. crassus, A. novaezelandiae and A. papernai, and thus may be common to the group.


Asunto(s)
Anguilla/parasitología , Dracunculoidea/clasificación , Filogenia , Sacos Aéreos/parasitología , Animales , ADN Mitocondrial/genética , Variación Genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
11.
Ecol Evol ; 12(5): e8889, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35571751

RESUMEN

Parasites have been proposed to modulate the fitness of hybridizing hosts in part based on observations in the European house mouse hybrid zone (HMHZ), a tension zone in which hybrids show reduced fitness. We here review evidence (1) for parasite load differences in hybrid versus parental mice and (2) for health and fitness effects of parasites promoting or preventing introgression and hybridization. The question of relative resistance or susceptibility of hybrids to parasites in the HMHZ has long been controversial. Recent field studies found hybrids to be more resistant than mice from parental subspecies against infections with pinworms and protozoans (Eimeria spp.). We argue that the field studies underlying the contradictory impression of hybrid susceptibility have limitations in sample size, statistical analysis and scope, focusing only on macroparasites. We suggest that weighted evidence from field studies indicate hybrid resistance. Health is a fitness component through which resistance can modulate overall fitness. Resistance, however, should not be extrapolated directly to a fitness effect, as the relationship between resistance and health can be modulated by tolerance. In our own recent work, we found that the relationship between health and resistance (tolerance) differs between infections with the related species E. falciformis and E. ferrisi. Health and tolerance need to be assessed directly and the choice of parasite has made this difficult in previous experimental studies of house mice. We discuss how experimental Eimeria spp. infections in hybrid house mice can address resistance, health and tolerance in conjunction.

12.
Int J Parasitol ; 52(8): 519-524, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533731

RESUMEN

Infections with high doses of intestinal nematodes result in protective immunity based on robust type 2 responses in most mouse lines under laboratory conditions. Here, we report on cellular responses of wild house mice from northern Germany. We detected robust Th1 responses in wild house mice naturally infected with the whipworm Trichuris muris. In contrast, mice infected with pinworms (Syphacia, Aspiculuris) reported type-2 activity by elevated IgG1 levels and eosinophil counts, but also harbored high frequencies of Foxp3+ regulatory T cells, suggesting that natural whip- and pinworm infections induce distinct immunoregulatory as well as effector profiles.


Asunto(s)
Enterobiasis , Tricuriasis , Animales , Enterobiasis/veterinaria , Inmunidad , Ratones , Células Th2 , Tricuriasis/veterinaria , Trichuris/fisiología
13.
Microbiome ; 10(1): 229, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36527132

RESUMEN

BACKGROUND: Intestinal helminths are extremely prevalent among humans and animals. In particular, intestinal roundworms affect more than 1 billion people around the globe and are a major issue in animal husbandry. These pathogens live in intimate contact with the host gut microbiota and harbor bacteria within their own intestines. Knowledge of the bacterial host microbiome at the site of infection is limited, and data on the parasite microbiome is, to the best of our knowledge, non-existent. RESULTS: The intestinal microbiome of the natural parasite and zoonotic macropathogen, Ascaris suum was analyzed in contrast to the diversity and composition of the infected host gut. 16S sequencing of the parasite intestine and host intestinal compartments showed that the parasite gut has a significantly less diverse microbiome than its host, and the host gut exhibits a reduced microbiome diversity at the site of parasite infection in the jejunum. While the host's microbiome composition at the site of infection significantly determines the microbiome composition of its parasite, microbial signatures differentiate the nematodes from their hosts as the Ascaris intestine supports the growth of microbes that are otherwise under-represented in the host gut. CONCLUSION: Our data clearly indicate that a nematode infection reduces the microbiome diversity of the host gut, and that the nematode gut represents a selective bacterial niche harboring bacteria that are derived but distinct from the host gut. Video Abstract.


Asunto(s)
Ascaris suum , Microbioma Gastrointestinal , Helmintos , Microbiota , Nematodos , Parásitos , Humanos , Animales , Bacterias/genética
14.
Parasit Vectors ; 15(1): 45, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35120561

RESUMEN

BACKGROUND: Counting parasite transmission stages in faeces is the classical measurement to quantify "parasite load". DNA-based quantifications of parasite intensities from faecal samples are relatively novel and often validated against such counts. When microscopic and molecular quantifications do not correlate, it is unclear whether oocyst counts or DNA-based intensity better reflects biologically meaningful concepts. Here, we investigate this issue using the example of Eimeria ferrisi (Coccidia), an intracellular parasite of house mice (Mus musculus). METHODS: We performed an infection experiment of house mice with E. ferrisi, in which the intensity of infection correlates with increased health impact on the host, measured as temporary weight loss during infection. We recorded the number of parasite transmissive stages (oocysts) per gram of faeces (OPG) and, as a DNA-based measurement, the number of Eimeria genome copies per gram of faeces for 10 days post-infection (dpi). We assessed weight loss relative to the day of experimental infection as a proxy of host health and evaluated whether DNA or oocyst counts are better predictors of host health. RESULTS: Absolute quantification of Eimeria DNA and oocyst counts showed similar but slightly diverging temporal patterns during 10 dpi. We detected Eimeria DNA earlier than the first appearance of oocysts in faeces. Additionally, Eimeria OPGs within each dpi did not explain parasite DNA intensity. Early dpi were characterized by high DNA intensity with low oocyst counts, while late infections showed the opposite pattern. The intensity of Eimeria DNA was consistently a stronger predictor of either maximal weight loss (1 value per animal during the infection course) or weight loss on each day during the experiment when controlling for between-dpi and between-individual variance. CONCLUSIONS: Eimeria ferrisi oocyst counts correlate weakly with parasite intensity assessed through DNA quantification. DNA is likely partially derived from life-cycle stages other than transmissive oocysts. DNA-based intensities predict health outcomes of infection for the host more robustly than counts of transmissive stages. We conclude that DNA-based quantifications should not necessarily require validation against counts of transmissive stages. Instead, DNA-based load estimates should be evaluated as complementary sources of information with potential specific biological relevance for each host-parasite system.


Asunto(s)
Coccidiosis , Eimeria , Animales , Coccidiosis/veterinaria , ADN , Eimeria/genética , Heces , Ratones , Oocistos , Carga de Parásitos , Roedores
15.
mSystems ; 6(2)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879496

RESUMEN

Dual RNA sequencing (RNA-Seq) is the simultaneous transcriptomic analysis of interacting symbionts, for example, in malaria. Potential cross-species interactions identified by correlated gene expression might highlight interlinked signaling, metabolic, or gene regulatory pathways in addition to physically interacting proteins. Often, malaria studies address one of the interacting organisms-host or parasite-rendering the other "contamination." Here we perform a meta-analysis using such studies for cross-species expression analysis. We screened experiments for gene expression from host and Plasmodium. Out of 171 studies in Homo sapiens, Macaca mulatta, and Mus musculus, we identified 63 potential studies containing host and parasite data. While 16 studies (1,950 samples) explicitly performed dual RNA-Seq, 47 (1,398 samples) originally focused on one organism. We found 915 experimental replicates from 20 blood studies to be suitable for coexpression analysis and used orthologs for meta-analysis across different host-parasite systems. Centrality metrics from the derived gene expression networks correlated with gene essentiality in the parasites. We found indications of host immune response to elements of the Plasmodium protein degradation system, an antimalarial drug target. We identified well-studied immune responses in the host with our coexpression networks, as our approach recovers known broad processes interlinked between hosts and parasites in addition to individual host and parasite protein associations. The set of core interactions represents commonalities between human malaria and its model systems for prioritization in laboratory experiments. Our approach might also allow insights into the transferability of model systems for different pathways in malaria studies.IMPORTANCE Malaria still causes about 400,000 deaths a year and is one of the most studied infectious diseases. The disease is studied in mice and monkeys as lab models to derive potential therapeutic intervention in human malaria. Interactions between Plasmodium spp. and its hosts are either conserved across different host-parasite systems or idiosyncratic to those systems. Here we use correlation of gene expression from different RNA-Seq studies to infer common host-parasite interactions across human, mouse, and monkey studies. First, we find a set of very conserved interactors, worth further scrutiny in focused laboratory experiments. Second, this work might help assess to which extent experiments and knowledge on different pathways can be transferred from models to humans for potential therapy.

16.
Comput Struct Biotechnol J ; 19: 719-731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33510872

RESUMEN

Successful asexual reproduction of intracellular pathogens depends on their potential to exploit host resources and subvert antimicrobial defense. In this work, we deployed two prevalent apicomplexan parasites of mammalian cells, namely Toxoplasma gondii and Eimeria falciformis, to identify potential host determinants of infection. Expression analyses of the young adult mouse colonic (YAMC) epithelial cells upon infection by either parasite showed regulation of several distinct transcripts, indicating that these two pathogens program their intracellular niches in a tailored manner. Conversely, parasitized mouse embryonic fibroblasts (MEFs) displayed a divergent transcriptome compared to corresponding YAMC epithelial cells, suggesting that individual host cells mount a fairly discrete response when encountering a particular pathogen. Among several host transcripts similarly altered by T. gondii and E. falciformis, we identified cFos, a master transcription factor, that was consistently induced throughout the infection. Indeed, asexual growth of both parasites was strongly impaired in MEF host cells lacking cFos expression. Last but not the least, our differential transcriptomics of the infected MEFs (parental and cFos-/- mutant) and YAMC epithelial cells disclosed a cFos-centered network, underlying signal cascades, as well as a repertoire of nucleotides- and ion-binding proteins, which presumably act in consort to acclimatize the mammalian cell and thereby facilitate the parasite development.

17.
Ecol Evol ; 10(24): 13938-13948, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33391692

RESUMEN

Resistance (host capacity to reduce parasite burden) and tolerance (host capacity to reduce impact on its health for a given parasite burden) manifest two different lines of defense. Tolerance can be independent from resistance, traded off against it, or the two can be positively correlated because of redundancy in underlying (immune) processes. We here tested whether this coupling between tolerance and resistance could differ upon infection with closely related parasite species. We tested this in experimental infections with two parasite species of the genus Eimeria. We measured proxies for resistance (the (inverse of) number of parasite transmission stages (oocysts) per gram of feces at the day of maximal shedding) and tolerance (the slope of maximum relative weight loss compared to day of infection on number of oocysts per gram of feces at the day of maximal shedding for each host strain) in four inbred mouse strains and four groups of F1 hybrids belonging to two mouse subspecies, Mus musculus domesticus and Mus musculus musculus. We found a negative correlation between resistance and tolerance against Eimeria falciformis, while the two are uncoupled against Eimeria ferrisi. We conclude that resistance and tolerance against the first parasite species might be traded off, but evolve more independently in different mouse genotypes against the latter. We argue that evolution of the host immune defenses can be studied largely irrespective of parasite isolates if resistance-tolerance coupling is absent or weak (E. ferrisi) but host-parasite coevolution is more likely observable and best studied in a system with negatively correlated tolerance and resistance (E. falciformis).

18.
Ecol Evol ; 10(3): 1378-1389, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32076521

RESUMEN

Intracellular parasites of the genus Eimeria are described as tissue/host-specific. Phylogenetic classification of rodent Eimeria suggested that some species have a broader host range than previously assumed. We explore whether Eimeria spp. infecting house mice are misclassified by the most widely used molecular markers due to a lack of resolution, or whether, instead, these parasite species are indeed infecting multiple host species.With the commonly used markers (18S/COI), we recovered monophyletic clades of E. falciformis and E. vermiformis from Mus that included E. apionodes identified in other rodent host species (Apodemus spp., Myodes glareolus, and Microtus arvalis). A lack of internal resolution in these clades could suggest the existence of a species complex with a wide host range infecting murid and cricetid rodents. We question, however, the power of COI and 18S markers to provide adequate resolution for assessing host specificity. In addition to the rarely used marker ORF470 from the apicoplast genome, we present multilocus genotyping as an alternative approach. Phylogenetic analysis of 35 nuclear markers differentiated E. falciformis from house mice from isolates from Apodemus hosts. Isolates of E. vermiformis from Mus are still found in clusters interspersed with non-Mus isolates, even with this high-resolution data.In conclusion, we show that species-level resolution should not be assumed for COI and 18S markers in coccidia. Host-parasite cospeciation at shallow phylogenetic nodes, as well as contemporary coccidian host ranges more generally, is still open questions that need to be addressed using novel genetic markers with higher resolution.

19.
Sci Rep ; 10(1): 13586, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32788636

RESUMEN

P-glycoproteins (Pgp) have been proposed as contributors to the widespread macrocyclic lactone (ML) resistance in several nematode species including a major pathogen of foals, Parascaris univalens. Using new and available RNA-seq data, ten different genomic loci encoding Pgps were identified and characterized by transcriptome-guided RT-PCRs and Sanger sequencing. Phylogenetic analysis revealed an ascarid-specific Pgp lineage, Pgp-18, as well as two paralogues of Pgp-11 and Pgp-16. Comparative gene expression analyses in P. univalens and Caenorhabditis elegans show that the intestine is the major site of expression but individual gene expression patterns were not conserved between the two nematodes. In P. univalens, PunPgp-9, PunPgp-11.1 and PunPgp-16.2 consistently exhibited the highest expression level in two independent transcriptome data sets. Using RNA-Seq, no significant upregulation of any Pgp was detected following in vitro incubation of adult P. univalens with ivermectin suggesting that drug-induced upregulation is not the mechanism of Pgp-mediated ML resistance. Expression and functional analyses of PunPgp-2 and PunPgp-9 in Saccharomyces cerevisiae provide evidence for an interaction with ketoconazole and ivermectin, but not thiabendazole. Overall, this study established reliable reference gene models with significantly improved annotation for the P. univalens Pgp repertoire and provides a foundation for a better understanding of Pgp-mediated anthelmintic resistance.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Ascaridoidea/genética , Proteínas del Helminto/genética , Caballos/parasitología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/clasificación , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Antiparasitarios/farmacología , Infecciones por Ascaridida/tratamiento farmacológico , Infecciones por Ascaridida/parasitología , Ascaridoidea/metabolismo , Ascaridoidea/fisiología , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Proteínas del Helminto/clasificación , Proteínas del Helminto/metabolismo , Ivermectina/farmacología , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Análisis de Secuencia de ARN/estadística & datos numéricos , Transcriptoma
20.
Front Immunol ; 10: 445, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915083

RESUMEN

Currently, methods for monitoring changes of gut barrier integrity and the associated immune response via non-invasive means are limited. Therefore, we aimed to develop a novel non-invasive technique to investigate immunological host responses representing gut barrier changes in response to infection. We identified the mucous layer on feces from mice to be mainly composed of exfoliated intestinal epithelial cells. Expression of RELM-ß, a gene prominently expressed in intestinal nematode infections, was used as an indicator of intestinal cellular barrier changes to infection. RELM-ß was detected as early as 6 days post-infection (dpi) in exfoliated epithelial cells. Interestingly, RELM-ß expression also mirrored the quality of the immune response, with higher amounts being detectable in a secondary infection and in high dose nematode infection in laboratory mice. This technique was also applicable to captured worm-infected wild house mice. We have therefore developed a novel non-invasive method reflecting gut barrier changes associated with alterations in cellular responses to a gastrointestinal nematode infection.


Asunto(s)
Enfermedades Gastrointestinales/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mucosa Intestinal/patología , Nematospiroides dubius/aislamiento & purificación , Infecciones por Strongylida/patología , Animales , Biomarcadores/análisis , Citocinas/análisis , Células Epiteliales/fisiología , Femenino , Enfermedades Gastrointestinales/parasitología , Mucosa Intestinal/parasitología , Ratones , Ratones Endogámicos BALB C , Nematospiroides dubius/inmunología , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología , Uniones Estrechas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA