Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Chem Rec ; 24(4): e202300352, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501854

RESUMEN

Recently, carbon neutrality has been promoted as a potentially practical solution to global CO2 emissions and increasing energy-consumption challenges. Many attempts have been made to remove CO2 from the environment to address climate change and rising sea levels owing to anthropogenic CO2 emissions. Herein, membrane technology is proposed as a suitable solution for carbon neutrality. This review aims to comprehensively evaluate the currently available scientific research on membranes for carbon capture, focusing on innovative microporous material membranes used for CO2 separation and considering their material, chemical, and physical characteristics and permeability factors. Membranes from such materials comprise metal-organic frameworks, zeolites, silica, porous organic frameworks, and microporous polymers. The critical obstacles related to membrane design, growth, and CO2 capture and usage processes are summarized to establish novel membranes and strategies and accelerate their scaleup.

2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685850

RESUMEN

In the last few decades, reticular chemistry has grown significantly as a field of porous crystalline molecular materials. Scientists have attempted to create the ideal platform for analyzing distinct anions based on optical sensing techniques (chromogenic and fluorogenic) by assembling different metal-containing units with suitable organic linking molecules and different organic molecules to produce crystalline porous materials. This study presents novel platforms for anion recognition based on reticular chemistry with high selectivity, sensitivity, electronic tunability, structural recognition, strong emission, and thermal and chemical stability. The key materials for reticular chemistry, Metal-Organic Frameworks (MOFs), Zeolitic Imidazolate Frameworks (ZIFs), and Covalent-Organic Frameworks (COFs), and the pre- and post-synthetic modification of the linkers and the metal oxide clusters for the selective detection of the anions, have been discussed. The mechanisms involved in sensing are also discussed.


Asunto(s)
Estructuras Metalorgánicas , Óxidos , Aniones , Electrónica , Porosidad
3.
Chem Rec ; 22(7): e202200055, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35695377

RESUMEN

Metal-Organic Frameworks (MOFs), a novel class of porous extended crystalline structures, are favored in different fields of heterogeneous catalysis, CO2 separation and conversion, and energy storage (supercapacitors) due to their convenience of synthesis, structural tailor-ability, tunable pore size, high porosity, large specific surface area, devisable structures, and adjustable compositions. Nickel (Ni) is a ubiquitous element extensively applied in various fields of catalysis and energy storage due to its low cost, high abundance, thermal and chemical stability, and environmentally benign nature. Ni-based MOFs and their derivatives provide us with the opportunity to modify different properties of the Ni center to improve their potential as heterogeneous catalysts or energy storage materials. The recent achievements of Ni-MOFs and their derivatives as catalysts, membrane materials for CO2 separation and conversion, electrode materials and their respective performance have been discussed in this review.

4.
Chem Rec ; 22(7): e202100230, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34757694

RESUMEN

The continuous carbon dioxide (CO2 ) gas emissions associated with fossil fuel production, valorization, and utilization are serious challenges to the global environment. Therefore, several developments of CO2 capture, separation, transportation, storage, and valorization have been explored. Consequently, we documented a comprehensive review of the most advanced strategies adopted in metal-organic frameworks (MOFs) for CO2 capture and separation. The enhancements in CO2 capture and separation are generally achieved due to the chemistry of MOFs by controlling pore window, pore size, open-metal sites, acidity, chemical doping, post or pre-synthetic modifications. The chemistry of defects engineering, breathing in MOFs, functionalization in MOFs, hydrophobicity, and topology are the salient advanced strategies, recently reported in MOFs for CO2 capture and separation. Therefore, this review summarizes MOF materials' advancement explaining different strategies and their role in the CO2 mitigations. The study also provided useful insights into key areas for further investigations.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Dióxido de Carbono , Metales
5.
Chemistry ; 27(43): 11132-11140, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34036649

RESUMEN

Mixed-matrix membranes (MMMs) with combination of two distinct dimensional nanofillers (such as 1D-3D, 2D-3D, or 3D-3D, etc.) have drawn special attention for gas separation applications due to their concerted effects on gas permeation and mechanical properties. An amine-functionalized 1D multiwalled carbon nanotube (NH2 -MWCNT) with exceptional mechanical strength and rapid gas transport was crosslinked with an amine-functionalized 3D metal-organic framework (UiO-66-NH2 ) with high CO2 affinity in a Schiff base reaction. The resultant crosslinked mixed-dimensional nanostructure was used as a nanofiller in a polysulfone (PSf) polymer matrix to explore the underlying synergy between 1D and 3D nanostructures on the gas separation performance of MMMs. Cross-sectional scanning electron microscopy and mapping revealed the homogenous dispersion of UiO-66@MWCNT in the polymer matrix. The MMM containing 5.0 wt. % UiO-66@MWCNT demonstrated a superior permeability 8.3 Barrer as compared to the 4.2 Barrer of pure PSf membrane for CO2 . Moreover, the selectivity (CO2 /CH4 ) of this MMM was enhanced to 39.5 from the 28.0 observed for pure PSf under similar conditions of pressure and temperature.

6.
Chem Rec ; 21(7): 1771-1791, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33955166

RESUMEN

Among thousands of known metal-organic frameworks (MOFs), the University of Oslo's MOF (UiO-66) exhibits unique structure topology, chemical and thermal stability, and intriguing tunable properties, that have gained incredible research interest. This paper summarizes the structural advancement of UiO-66 and its role in CO2 capture, separation, and transformation into chemicals. The first part of the review summarizes the fast-growing literature related to the CO2 capture reported by UiO-66 during the past ten years. The second part provides an overview of various advancements in UiO-66 membranes in CO2 purification. The third part describes the role of UiO-66 and its composites as catalysts for CO2 conversion into useful products. Despite many achievements, significant challenges associated with UiO-66 are addressed, and future perspectives are comprehensively presented to forecast how UiO-66 might be used further for CO2 management.

7.
Molecules ; 26(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34641317

RESUMEN

In this work, we prepared a fluorescein hydrazide-appended Ni(MOF) (Metal-Organic Framework) [Ni3(BTC)2(H2O)3]·(DMF)3(H2O)3 composite, FH@Ni(MOF). This composite was well-characterized by PXRD (powder X-ray diffraction), FT-IR (Fourier transform infrared spectroscopy), N2 adsorption isotherm, TGA (thermogravimetric analysis), XPS (X-ray photoelectron spectroscopy), and FESEM (field emission scanning electron microscopy). This composite was then tested with different heavy metals and was found to act as a highly selective and sensitive optical sensor for the Hg2+ ion. It was found that the aqueous emulsion of this composite produces a new peak in absorption at 583 nm, with a chromogenic change to a pink color visible to the naked eye upon binding with Hg2+ ions. In emission, it enhances fluorescence with a fluorogenic change to green fluorescence upon complexation with the Hg2+ ion. The binding constant was found to be 9.4 × 105 M-1, with a detection limit of 0.02 µM or 5 ppb. This sensor was also found to be reversible and could be used for seven consecutive cycles. It was also tested for Hg2+ ion detection in practical water samples from ground water, tap water, and drinking water.

8.
Inorg Chem ; 58(3): 1738-1741, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30638368

RESUMEN

A new europium-based metal-organic framework, termed KFUPM-3, was constructed using an allyloxy-functionalized linker. As a result of coordinative interactions between the allyloxy moieties and Pd2+, highly selective changes in both the absorption and emission spectra of KFUPM-3 were observed. Accordingly, KFUPM-3 was demonstrated to have an ultrasensitive Pd2+ detection limit (44 ppb), regenerative properties without loss in performance, detection of palladium in different oxidation states and in the presence of other competitor metal ions, and fully functional sensing capabilities over a wide pH range.

9.
J Fluoresc ; 26(1): 1-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26573285

RESUMEN

A new highly selective, chromogenic, and fluorogenic Cu(2+) chemosensor, fluorescein-N-methylimidazole conjugate 1, and another fluorescein-N-imidazole conjugate 2 were synthesized and investigated by UV-visible and fluorescence spectroscopy. The sensing of Cu(2+) quenches the emission band of 1 at λmax = 525 nm, with an association constant (K a = 1.0 x 10(7) M(-1)) and a stoichiometry of 1:1 in a buffered H2O: MeOH solution (4:1, pH = 7.4). The Cu(2+) detection limit for chemosensor 1 is 37 nM. The presence of the N-methyl group in 1 increased the Cu(2+) binding selectivity, resulting in a stronger binding constant and a broader pH working range (pH 5-10) in comparison to 2. The fluorescence in 1 and 2 is caused by electron transfer phenomenon from the imidazole nitrogen to fluorescein, which is readily inhibited by Cu(2+) binding.

10.
Chem Asian J ; : e202301039, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324734

RESUMEN

In the realm of renewable energy technologies, the development of efficient and durable electrocatalysts is paramount, especially for applications like electrochemical water splitting. This research focuses on synthesizing a novel bimetallic metal-organic framework (BMMOF11) using earth-abundant elements, cobalt (Co) and cadmium (Cd). BMMOF11 showcases a distinctive structure with distorted octahedral chains of CoO and CdO, linked by benzene tricarboxylic acid (BTC). Our study primarily investigates the electrocatalytic efficiency of BMMOF11, particularly in water oxidation reactions. For practical analysis, BMMOF11 was anchored onto nickel foam, forming BMMOF11/NF, to evaluate its electrocatalytic properties. Electrochemical testing revealed that BMMOF11/NF begins water oxidation at an onset potential of 1.62 V versus RHE, demonstrating high activity with a lower overpotential of 0.4 V to achieve a current density of 10 mA/cm2 . Moreover, BMMOF11/NF maintained stable water splitting performance, sustaining a current density of approximately 70 mA/cm2 under a voltage of 1.9 V relative to RHE. These findings indicate that BMMOF11/NF is a promising candidate for large-scale electrochemical water splitting, offering a blend of high activity and stability.

11.
Chem Asian J ; : e202300625, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37609855

RESUMEN

Layered double hydroxides (LDHs) are promising materials for oxygen evolution reactions (OERs), a key component of water splitting to produce hydrogen and oxygen via water electrolysis. However, the performance of LDHs can be limited by their low surface area and poor accessibility of active sites. In this work, we synthesized highly exfoliated 2D NiAl-LDHs by aqueous miscible solvent treatment method (AMOST) and compared its electrocatalytic efficiency with its analogue synthesised via slow urea hydrolysis. We demonstrate that the exfoliated 2D LDHs prepared by AMOST method have a higher surface area and more active sites than the crystalline LDHs obtained through urea hydrolysis, resulting in a superior OER activity and efficiency. The exfoliated 2D LDHs required a lower overpotential of 280 mV to reach a current density of 50 mA cm-2 and it also outperformed IrO2 , a benchmark OER catalyst, in terms of overpotential and stability. We demonstrate that the physicochemical properties of nanosheets derived from NIAl-LDH-based materials are strongly influenced by the synthetic methodology, which affects the exfoliation degree, surface area and active site density. These factors are crucial for improving the OER catalytic performance of these materials, as shown by our results.

12.
ACS Omega ; 8(39): 36228-36236, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810635

RESUMEN

CO2 capture is a useful strategy for controlling the risks associated with global warming. The design of an adsorbent is essential for clean and potentially energy-efficient adsorption-based carbon capture processes. This study reports a facile and moderately temperature single-stage combined pyrolysis and activation strategy for the synthesis of nitrogen-doped carbons for high-performance CO2 capture. Using nitrogen-rich Albizia procera leaves as the precursor and carrying out single-stage pyrolysis and activation at temperatures of 500, 600, and 700 °C in the presence NaHCO3 as an activating agent, carbons with different surface characteristics and ultrahigh weight percentage (22-25%) of nitrogen were obtained. The subtle differences in surface characteristics and nitrogen content had a bearing on the CO2 adsorption performance of the resultant adsorbents. Outstanding results were achieved, with a CO2 adsorption capacity of up to 2.5 mmol/g and a CO2 over N2 selectivities reaching 54. The isotherm results were utilized to determine the performance indicators for a practical vacuum swing adsorption process. This study provides a practical strategy for the efficient synthesis of nitrogen-doped carbons for various adsorption applications.

13.
Chem Asian J ; 18(17): e202300481, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37455604

RESUMEN

CO2 capture is a practical approach to mitigating the impacts of global warming. Adsorption-based carbon capture is a clean and potentially energy-efficient method whose performance greatly depends on adsorbent design. In this study, we explored the use of jute-derived carbon as a high-performance adsorbent for CO2 capture. The carbons were produced by pyrolyzing powdered jute sticks with NaHCO3 as an activating agent at 500-700 °C. Impressive adsorption capacities of up to 2.5 mmol ⋅ g-1 and CO2 /N2 selectivities of up to 54 were achieved by adjusting the pore size distribution and surface functionalization. Based on the isotherm results, the working capacities, regenerabilities, and potentials for CO2 separation were determined for a practical vacuum swing adsorption process. The adsorbent materials were characterized by XRD, FTIR, Raman, FESEM and N2 sorption at 77 K. This study provides a general approach for designing adsorbents for various gas-separation applications.

14.
Bioorg Med Chem Lett ; 22(17): 5541-4, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22853994

RESUMEN

A new fluorogenic substrate 1, which enables the fast and quantitative analysis of alkaline phosphatase activity, has been developed. Selective enzymatic hydrolysis of 1 instantly generated fluorescent compound 2 in aqueous media, which undergo an excited-state intramolecular proton transfer process, resulting in a remarkable fluorescence turn-on signal with an unusually large Stokes shift.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Pruebas de Enzimas/métodos , Colorantes Fluorescentes/metabolismo , Fosfatasa Alcalina/antagonistas & inhibidores , Colorantes Fluorescentes/química , Humanos , Hidrólisis , Cinética , Levamisol/farmacología , Protones , Espectrometría de Fluorescencia/métodos
15.
ACS Omega ; 7(26): 22657-22670, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35811917

RESUMEN

Doping the SiO2 support with Co, Ni, Zn, and Sc improves the thermal conductivity of a hybrid PEG/SiO2 form-stable phase change material (PCM). Doping also improves the energy utilization efficiency and speeds up the charging and discharging rates. The thermal, chemical, and hydrothermal stability of the PEG/Zn-SiO2 and PEG/Sc-SiO2 hybrid materials is better than that of the other doped materials. The phase change enthalpy of PEG/Zn-SiO2 is 147.6 J/g lower than that of PEG/Sc-SiO2, while the thermal conductivity is 40% higher. The phase change enthalpy of 155.8 J/g of PEG/Sc-SiO2 PCM is very close to that of the parent PEG. PEG/Sc-SiO2 also demonstrates excellent thermal stability when subjected to 200 consecutive heating-cooling cycles and outstanding hydrothermal stability when examined under a stream at 120 °C for 2 h. The supercooling of the PEG/Sc-SiO2 system is the lowest among the tested materials. In addition, the developed PCM composite has a high energy storage capacity and high thermal energy storage/release rates.

16.
ACS Omega ; 7(45): 41096-41099, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406580

RESUMEN

It is essential to determine the heat storage efficiency of shape-stabilized phase change materials (ss-PCMs). In two published articles, the formula for heat storage efficiency is presented using two distinct equations. Using the two equations, the calculated values for heat storage efficiency revealed significant discrepancies. The outcomes cannot be compared. The evaluation of heat storage efficiency has a substantial impact on the practical application of PCMs and serves as a performance benchmark for the PCM samples that have been tested. In this paper, the correct equations for calculating the efficiency of heat storage are presented. Furthermore, it is essential to note that the methods used to calculate the supercooling value are not straightforward. Consequently, this paper clarified the correct formula and/or method for determining the supercooling value and heat storage efficiency of ss-PCMs.

17.
Membranes (Basel) ; 12(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36363610

RESUMEN

Mixed Matrix Membranes (MMM) with enhanced selectivity and permeability are preferred for gas separations. The porous metal-organic frameworks (MOFs) materials incorporated in them play a crucial part in improving the performance of MMM. In this study, Zeolitic imidazolate frameworks (ZIF-90) are selected to fabricate Polyetherimide (PEI) MMMs owing to their lucrative structural and chemical properties. This work reports new controlled post-synthetic modifications of ZIF-90 (50-PSM-ZIF-90) with ethanolamine to control the diffusion and uptake of CO2. Physical and chemical properties of ZIF-90, such as stability and presence of aldehyde functionality in the imidazolate linker, allow for easy modulation of the ZIF-90 pores and window size to tune the gas transport properties across ZIF-90-based membranes. Effects of these materials were investigated on the performance of MMMs and compared with pure PEI membranes. Performance of the MMMs was evaluated in terms of permeability of different gases and selective separation of CO2 and H2 gas. Results presented that the permeability of all membranes was in the following order, i.e., P(H2) > P(CO2) > P(O2) > P(CH4) > P(C2H6) > P(C3H8) > P(N2), demonstrating that kinetic gas diffusion is the predominant gas transport mode in these membranes. Among all the membranes, permeability of pure PEI membrane was highest for all gases due to the uniform porous morphology. The pure PEI membrane showed highest permeability of H2, which is 486.5 Barrer, followed by 49 Barrer for O2, 29 Barrer for N2, 142 Barrer for CO2, 41 Barrer for CH4, 40 Barrer for C2H6 and 39.6 Barrer for C3H8. Results also confirm the superiority of controlled PSM-ZIF-90-PEI membrane over the pure PEI and ZIF-90-PEI membranes in CO2 and H2 separation performance. The 50-PSM-ZIF-90 PEI membrane exhibited a 20% increase in CO2 separation from methane and a 26% increase over nitrogen compared to the ZIF-90-PEI membrane. The 50-PSM-ZIF-90 PEI membrane showed 15% more H2/O2 separation and 9% more H2/CH4 separation than ZIF-90 PEI membrane. Overall, this study represents the role of controlled PSM in enhancing the property of new materials like ZIF and its application in MMMs fabrication to develop a promising approach for the CO2 capture and separation.

18.
Chem Asian J ; 16(13): 1839-1848, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34036746

RESUMEN

Poly(ether-block-amide)/g-PTAP mixed matrix membranes (MMMs) were developed by incorporating different wt.% (1-10%) of a novel 2D g-PTAP nanofiller and its effects on membrane structure and gas permeability were studied. The novel 2D material g-PTAP was synthesized and characterized by various analytical techniques including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Raman spectroscopy. The fabricated MMMs were investigated to study the interaction and compatibility between Pebax and g-PTAP. The MMMs showed an effective integration of g-PTAP nanofiller into the Pebax matrix without affecting its thermal stability. Gas permeation experiments with MMMs showed improved CO2 permeability and selectivity (CO2 /N2 ) upon incorporation of g-PTAP in the Pebax polymer matrix. The maximum CO2 permeability enhancement from 82.3 to 154.6 Barrer with highest CO2 /N2 selectivity from 49.5 to 83.5 were found with 2.5 wt.% of nanofiller compared to neat Pebax membranes.

19.
Polymers (Basel) ; 13(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34641048

RESUMEN

A series of UV-protected coatings were prepared using cerium-oxide-functionalized oil fly ash (f-OFA-CeO2) in waterborne polyurethane (WBPU) dispersions. Three monomers, namely, poly(tetramethyleneoxide glycol) (PTMG), polydimethylsiloxane-hydroxy terminated (PDMS) and 4,4-dicyclohexylmethane diisocyanate (H12MDI), were used to pre-mix with f-OFA-CeO2 separately, followed by the synthesis of WBPU/f-OFA-CeO2 dispersions. The f-OFA-CeO2 distribution and enrichment into any part (top/bottom/bulk) of the coating was strongly affected by the pre-mixing of f-OFA-CeO2. The f-OFA-CeO2 was densely distributed in the top, bottom and bulk when the f-OFA-CeO2 was pre-mixed with PDMS, H12MDI and PTMG, respectively. Only an f-OFA-CeO2-enriched top surface showed excellent UV protection. The lowest UV-degraded exposed coating was found when the top surface of the coating was f-OFA-CeO2-enriched.

20.
Nanomaterials (Basel) ; 11(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34443860

RESUMEN

Electrochemical CO2 reduction reaction (CO2RR) provides a promising approach to curbing harmful emissions contributing to global warming. However, several challenges hinder the commercialization of this technology, including high overpotentials, electrode instability, and low Faradic efficiencies of desirable products. Several materials have been developed to overcome these challenges. This mini-review discusses the recent performance of various cobalt (Co) electrocatalysts, including Co-single atom, Co-multi metals, Co-complexes, Co-based metal-organic frameworks (MOFs), Co-based covalent organic frameworks (COFs), Co-nitrides, and Co-oxides. These materials are reviewed with respect to their stability of facilitating CO2 conversion to valuable products, and a summary of the current literature is highlighted, along with future perspectives for the development of efficient CO2RR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA