Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261399

RESUMEN

Adenovirus protein VII (pVII) plays a crucial role in the nuclear localization of genomic DNA following viral infection and contains nuclear localization signal (NLS) sequences for the importin (IMP)-mediated nuclear import pathway. However, functional analysis of pVII in adenoviruses to date has failed to fully determine the underlying mechanisms responsible for nuclear import of pVII. Therefore, in the present study, we extended our analysis by examining the nuclear trafficking of adenovirus pVII from a non-human species, psittacine siadenovirus F (PsSiAdV). We identified a putative classical (c)NLS at pVII residues 120-128 (120PGGFKRRRL128). Fluorescence polarization and electrophoretic mobility shift assays demonstrated direct, high-affinity interaction with both IMPα2 and IMPα3 but not IMPß. Structural analysis of the pVII-NLS/IMPα2 complex confirmed a classical interaction, with the major binding site of IMPα occupied by K124 of pVII-NLS. Quantitative confocal laser scanning microscopy showed that PsSiAdV pVII-NLS can confer IMPα/ß-dependent nuclear localization to GFP. PsSiAdV pVII also localized in the nucleus when expressed in the absence of other viral proteins. Importantly, in contrast to what has been reported for HAdV pVII, PsSiAdV pVII does not localize to the nucleolus. In addition, our study demonstrated that inhibition of the IMPα/ß nuclear import pathway did not prevent PsSiAdV pVII nuclear targeting, indicating the existence of alternative pathways for nuclear localization, similar to what has been previously shown for human adenovirus pVII. Further examination of other potential NLS signals, characterization of alternative nuclear import pathways, and investigation of pVII nuclear targeting across different adenovirus species is recommended to fully elucidate the role of varying nuclear import pathways in the nuclear localization of pVII.


Asunto(s)
Siadenovirus , Transporte Activo de Núcleo Celular , Transporte de Proteínas , Señales de Localización Nuclear/genética , Carioferinas
2.
BMC Vet Res ; 19(1): 153, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37705000

RESUMEN

Infections with the coccidian parasite Neospora caninum affect domestic and wild animals worldwide. In Australia, N. caninum infections cause considerable losses to the cattle industry with seroprevalence of 8.7% in beef and 10.9% in dairy cattle. Conversely, the role of wild animals, in maintaining the parasite cycle is also unclear. It is possible that native or introduced herbivorous species could be reservoir hosts of N. caninum in Australia, but to date, this has not been investigated. We report here the first large-scale screening of N. caninum antibodies in Australian wild deer, spanning three species (fallow, red and sambar deer). Consequently, we also assessed two commercial cELISA tests validated for detecting N. caninum in cattle for their ability to detect N. caninum antibodies in serum samples of wild deer. N. caninum antibodies were detected in 3.7% (7/189, 95% CI 1.8 - 7.45) of the wild deer serum samples collected in south-eastern Australia (n = 189), including 97 fallow deer (Dama dama), 14 red deer (Cervus elaphus), and 78 sambar deer (Rusa unicolor). Overall, our study provides the first detection of N. caninum antibodies in wild deer and quantifies deer's potential role in the sylvatic cycle of N. caninum.


Asunto(s)
Antígenos de Grupos Sanguíneos , Ciervos , Animales , Bovinos , Animales Salvajes , Estudios Seroepidemiológicos , Australia/epidemiología , Ambiente
3.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34406117

RESUMEN

Viperin is a gene with a broad spectrum of antiviral functions and various mechanisms of action. The role of viperin in herpes simplex virus type 1 (HSV-1) infection is unclear, with conflicting data in the literature that is derived from a single human cell type. We have addressed this gap by investigating viperin during HSV-1 infection in several cell types, spanning species and including immortalized, non-immortalized and primary cells. We demonstrate that viperin upregulation by HSV-1 infection is cell-type-specific, with mouse cells typically showing greater increases compared with those of human origin. Further, overexpression and knockout of mouse, but not human viperin significantly impedes and increases HSV-1 replication, respectively. In primary mouse fibroblasts, viperin upregulation by infection requires viral gene transcription and occurs in a predominantly IFN-independent manner. Further we identify the N-terminal domain of viperin as being required for the anti-HSV-1 activity. Interestingly, this is the region of viperin that differs most between mouse and human, which may explain the apparent species-specific activity against HSV-1. Finally, we show that HSV-1 virion host shutoff (vhs) protein is a key viral factor that antagonises viperin in mouse cells. We conclude that viperin can be upregulated by HSV-1 in mouse and human cells, and that mouse viperin has anti-HSV-1 activity.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1/inmunología , Proteínas/fisiología , Animales , Antivirales/inmunología , Línea Celular , Chlorocebus aethiops , Fibroblastos/citología , Fibroblastos/inmunología , Herpes Simple/inmunología , Herpes Simple/virología , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Ribonucleasas/inmunología , Proteínas Virales/inmunología
4.
Immunol Cell Biol ; 99(4): 373-391, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33131099

RESUMEN

Viperin is an interferon-inducible protein that is pivotal for eliciting an effective immune response against an array of diverse viral pathogens. Here we describe a mechanism of viperin's broad antiviral activity by demonstrating the protein's ability to synergistically enhance the innate immune dsDNA signaling pathway to limit viral infection. Viperin co-localized with the key signaling molecules of the innate immune dsDNA sensing pathway, STING and TBK1; binding directly to STING and inducing enhanced K63-linked polyubiquitination of TBK1. Subsequent analysis identified viperin's necessity to bind the cytosolic iron-sulfur assembly component 2A, to prolong its enhancement of the type-I interferon response to aberrant dsDNA. Here we show that viperin facilitates the formation of a signaling enhanceosome, to coordinate efficient signal transduction following activation of the dsDNA signaling pathway, which results in an enhanced antiviral state. We also provide evidence for viperin's radical SAM enzymatic activity to self-limit its immunomodulatory functions. These data further define viperin's role as a positive regulator of innate immune signaling, offering a mechanism of viperin's broad antiviral capacity.


Asunto(s)
Interferón Tipo I , ADN , Unión Proteica , Proteínas/metabolismo , Transducción de Señal
5.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922664

RESUMEN

Lipid droplets (LDs) have traditionally been thought of as solely lipid storage compartments for cells; however, in the last decade, they have emerged as critical organelles in health and disease. LDs are highly dynamic within cells, and their movement is critical in organelle-organelle interactions. Their dynamics are known to change during cellular stress or nutrient deprivation; however, their movement during pathogen infections, especially at very early timepoints, is under-researched. This study aimed to track LD dynamics in vitro, in an astrocytic model of infection. Cells were either stimulated with a dsRNA viral mimic, poly I:C, or infected with the RNA virus, Zika virus. Individual LDs within infected cells were analysed to determine displacement and speed, and average LD characteristics for multiple individual cells calculated. Both LD displacement and mean speed were significantly enhanced in stimulated cells over a time course of infection with an increase seen as early as 2 h post-infection. With the emerging role for LDs during innate host responses, understanding their dynamics is critical to elucidate how these organelles influence the outcome of viral infection.


Asunto(s)
Astrocitos/inmunología , Inmunidad Innata/inmunología , Gotas Lipídicas/metabolismo , Infección por el Virus Zika/inmunología , Virus Zika/fisiología , Astrocitos/metabolismo , Astrocitos/virología , Células Cultivadas , Humanos , Metabolismo de los Lípidos , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología
8.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768867

RESUMEN

Viruses manipulate the complex interferon and interferon-stimulated gene (ISG) system in different ways. We have previously shown that HIV inhibits type I and III interferons in its key target cells but directly stimulates a subset of >20 ISGs in macrophages and dendritic cells, many of which are antiviral. Here, we examine the mechanism of induction of ISGs and show this occurs in two phases. The first phase was transient (0 to 24 h postinfection [hpi]), induced mainly by extracellular vesicles and one of its component proteins, HSP90α, contained within the HIV inoculum. The second, dominant, and persistent phase (>48 hpi) was induced via newly transcribed HIV RNA and sensed via RIGI, as shown by the reduction in ISG expression after the knockdown of the RIGI adaptor, MAVS, by small interfering RNA (siRNA) and the inhibition of both the initiation and elongation of HIV transcription by short hairpin RNA (shRNA) transcriptional silencing. We further define the induction pathway, showing sequential HIV RNA stimulation via Tat, RIGI, MAVS, IRF1, and IRF7, also identified by siRNA knockdown. IRF1 also plays a key role in the first phase. We also show that the ISGs IFIT1 to -3 inhibit HIV production, measured as extracellular infectious virus. All induced antiviral ISGs probably lead to restriction of HIV replication in macrophages, contributing to a persistent, noncytopathic infection, while the inhibition of interferon facilitates spread to adjacent cells. Both may influence the size of macrophage HIV reservoirs in vivo Elucidating the mechanisms of ISG induction may help in devising immunotherapeutic strategies to limit the size of these reservoirs.IMPORTANCE HIV, like other viruses, manipulates the antiviral interferon and interferon-stimulated gene (ISG) system to facilitate its initial infection and establishment of viral reservoirs. HIV specifically inhibits all type I and III interferons in its target cells, including macrophages, dendritic cells, and T cells. It also induces a subset of over 20 ISGs of differing compositions in each cell target. This occurs in two temporal phases in macrophages. Extracellular vesicles contained within the inoculum induce the first, transient phase of ISGs. Newly transcribed HIV RNA induce the second, dominant ISG phase, and here, the full induction pathway is defined. Therefore, HIV nucleic acids, which are potent inducers of interferon and ISGs, are initially concealed, and antiviral ISGs are not fully induced until replication is well established. These antiviral ISGs may contribute to persistent infection in macrophages and to the establishment of viral reservoirs in vivo.


Asunto(s)
Regulación de la Expresión Génica , VIH-1/fisiología , Interferones/metabolismo , Macrófagos/virología , ARN Viral/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Dendríticas/virología , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , ARN Interferente Pequeño , Proteínas de Unión al ARN , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal
9.
BMC Genomics ; 18(1): 298, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28407753

RESUMEN

BACKGROUND: Over the past 20 years, many marine seabird populations have been gradually declining and the factors driving this ongoing deterioration are not always well understood. Avipoxvirus infections have been found in a wide range of bird species worldwide, however, very little is known about the disease ecology of avian poxviruses in seabirds. Here we present two novel avipoxviruses from pacific shearwaters (Ardenna spp), one from a Flesh-footed Shearwater (A. carneipes) (SWPV-1) and the other from a Wedge-tailed Shearwater (A. pacificus) (SWPV-2). RESULTS: Epidermal pox lesions, liver, and blood samples were examined from A. carneipes and A. pacificus of breeding colonies in eastern Australia. After histopathological confirmation of the disease, PCR screening was conducted for avipoxvirus, circovirus, reticuloendotheliosis virus, and fungal agents. Two samples that were PCR positive for poxvirus were further assessed by next generation sequencing, which yielded complete Shearwaterpox virus (SWPV) genomes from A. pacificus and A. carneipes, both showing the highest degree of similarity with Canarypox virus (98% and 67%, respectively). The novel SWPV-1 complete genome from A. carneipes is missing 43 genes compared to CNPV and contains 4 predicted genes which are not found in any other poxvirus, whilst, SWPV-2 complete genome was deemed to be missing 18 genes compared to CNPV and a further 15 genes significantly fragmented as to probably cause them to be non-functional. CONCLUSION: These are the first avipoxvirus complete genome sequences that infect marine seabirds. In the comparison of SWPV-1 and -2 to existing avipoxvirus sequences, our results indicate that the SWPV complete genome from A. carneipes (SWPV-1) described here is not closely related to any other avipoxvirus genome isolated from avian or other natural host species, and that it likely should be considered a separate species.


Asunto(s)
Avipoxvirus/genética , Enfermedades de las Aves/virología , Genoma Viral , Infecciones por Poxviridae/diagnóstico , Animales , Organismos Acuáticos/virología , Australia , Avipoxvirus/aislamiento & purificación , Avipoxvirus/patogenicidad , Aves/clasificación , Aves/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Infecciones por Poxviridae/virología , Análisis de Secuencia de ADN/métodos
10.
J Biol Chem ; 290(43): 25946-59, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26354436

RESUMEN

The interferon-induced transmembrane (IFITM) family of proteins have recently been identified as important host effector molecules of the type I interferon response against viruses. IFITM1 has been identified as a potent antiviral effector against hepatitis C virus (HCV), whereas the related family members IFITM2 and IFITM3 have been described to have antiviral effects against a broad range of RNA viruses. Here, we demonstrate that IFITM2 and IFITM3 play an integral role in the interferon response against HCV and act at the level of late entry stages of HCV infection. We have established that in hepatocytes, IFITM2 and IFITM3 localize to the late and early endosomes, respectively, as well as the lysosome. Furthermore, we have demonstrated that S-palmitoylation of all three IFITM proteins is essential for anti-HCV activity, whereas the conserved tyrosine residue in the N-terminal domain of IFITM2 and IFITM3 plays a significant role in protein localization. However, this tyrosine was found to be dispensable for anti-HCV activity, with mutation of the tyrosine resulting in an IFITM1-like phenotype with the retention of anti-HCV activity and co-localization of IFITM2 and IFITM3 with CD81. In conclusion, we propose that the IFITM proteins act in a coordinated manner to restrict HCV infection by targeting the endocytosed HCV virion for lysosomal degradation and demonstrate that the actions of the IFITM proteins are indeed virus and cell-type specific.


Asunto(s)
Antígenos de Diferenciación/fisiología , Hepacivirus/fisiología , Fusión de Membrana/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Unión al ARN/fisiología , Antígenos de Diferenciación/metabolismo , Línea Celular Tumoral , Endosomas/metabolismo , Hepatitis C/fisiopatología , Hepatocitos/metabolismo , Humanos , Lipoilación , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
11.
J Gen Virol ; 97(1): 95-109, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26541871

RESUMEN

Sphingosine kinase (SK) 1 is a host kinase that enhances some viral infections. Here we investigated the ability of SK1 to modulate dengue virus (DENV) infection in vitro. Overexpression of SK1 did not alter DENV infection; however, targeting SK1 through chemical inhibition resulted in reduced DENV RNA and infectious virus release. DENV infection of SK1⁻/ ⁻ murine embryonic fibroblasts (MEFs) resulted in inhibition of infection in an immortalized line (iMEF) but enhanced infection in primary MEFs (1°MEFs). Global cellular gene expression profiles showed expected innate immune mRNA changes in DENV-infected WT but no induction of these responses in SK1⁻/⁻ iMEFs. Reverse transciption PCR demonstrated a low-level induction of IFN-ß and poor induction of mRNA for the interferon-stimulated genes (ISGs) viperin, IFIT1 and CXCL10 in DENV-infected SK1⁻/⁻ compared with WT iMEFs. Similarly, reduced induction of ISGs was observed in SK1⁻/⁻ 1°MEFs, even in the face of high-level DENV replication. In both iMEFs and 1°MEFs, DENV infection induced production of IFN-ß protein. Additionally, higher basal levels of antiviral factors (IRF7, CXCL10 and OAS1) were observed in uninfected SK1⁻/⁻ iMEFs but not 1°MEFs. This suggests that, in this single iMEF line, lack of SK1 upregulates the basal levels of factors that may protect cells against DENV infection. More importantly, regardless of the levels of DENV replication, all cells that lacked SK1 produced IFN-ß but were refractory to induction of ISGs such as viperin, IFIT1 and CXCL10. Based on these findings, we propose new roles for SK1 in affecting innate responses that regulate susceptibility to DENV infection.


Asunto(s)
Virus del Dengue/inmunología , Virus del Dengue/fisiología , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Inmunidad Innata , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Células Cultivadas , Fibroblastos/virología , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Noqueados
12.
J Gen Virol ; 96(12): 3587-3597, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26407968

RESUMEN

Little is known about the response of non-model invertebrates, such as oysters, to virus infection. The vertebrate innate immune system detects virus-derived nucleic acids to trigger the type I IFN pathway, leading to the transcription of hundreds of IFN-stimulated genes (ISGs) that exert antiviral functions. Invertebrates were thought to lack the IFN pathway based on the absence of IFN or ISGs encoded in model invertebrate genomes. However, the oyster genome encodes many ISGs, including the well-described antiviral protein viperin. In this study, we characterized oyster viperin and showed that it localizes to caveolin-1 and inhibits dengue virus replication in a heterologous model. In a second set of experiments, we have provided evidence that the haemolymph from poly(I : C)-injected oysters contains a heat-stable, protease-susceptible factor that induces haemocyte transcription of viperin mRNA in conjunction with upregulation of IFN regulatory factor. Collectively, these results support the concept that oysters have antiviral systems that are homologous to the vertebrate IFN pathway.


Asunto(s)
Antivirales/farmacología , Hemolinfa/química , Ostreidae/metabolismo , Ostreidae/virología , Proteínas/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Antivirales/química , Caveolina 1/genética , Caveolina 1/metabolismo , Virus del Dengue/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Calor , Lípidos/química , Datos de Secuencia Molecular , Proteínas/genética , Proteínas/farmacología , Replicación Viral/efectos de los fármacos
13.
J Virol ; 88(7): 3636-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24429364

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) NS5A is essential for viral genome replication within cytoplasmic replication complexes and virus assembly at the lipid droplet (LD) surface, although its definitive functions are poorly understood. We developed approaches to investigate NS5A dynamics during a productive infection. We report here that NS5A motility and efficient HCV RNA replication require the microtubule network and the cytoplasmic motor dynein and demonstrate that both motile and relatively static NS5A-positive foci are enriched with host factors VAP-A and Rab5A. Pulse-chase imaging revealed that newly synthesized NS5A foci are small and distinct from aged foci, while further studies using a unique dual fluorescently tagged infectious HCV chimera showed a relatively stable association of NS5A foci with core-capped LDs. These results reveal new details about the dynamics and maturation of NS5A and the nature of potential sites of convergence of HCV replication and assembly pathways. IMPORTANCE: Hepatitis C virus (HCV) is a major cause of serious liver disease worldwide. An improved understanding of the HCV replication cycle will enable development of novel and improved antiviral strategies. Here we have developed complementary fluorescent labeling and imaging approaches to investigate the localization, traffic and interactions of the HCV NS5A protein in living, virus-producing cells. These studies reveal new details as to the traffic, composition and biogenesis of NS5A foci and the nature of their association with putative sites of virus assembly.


Asunto(s)
Hepacivirus/inmunología , Proteínas no Estructurales Virales/análisis , Ensamble de Virus , Replicación Viral , Línea Celular , Dineínas/metabolismo , Hepatocitos/química , Hepatocitos/virología , Humanos , Microtúbulos/metabolismo , Proteínas de Transporte Vesicular/análisis , Proteínas de Unión al GTP rab5/análisis
14.
Hepatology ; 58(5): 1558-68, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23703790

RESUMEN

UNLABELLED: Host factors play an important role in all facets of the hepatitis C virus (HCV) life cycle and one such host factor is signal transducer and activator of transcription 3 (STAT3). The HCV core protein has been shown to directly interact with and activate STAT3, while oxidative stress generated during HCV replication in a replicon-based model also induced STAT3 activation. However, despite these findings the precise role of STAT3 in the HCV life cycle remains unknown. We have established that STAT3 is actively phosphorylated in the presence of replicating HCV. Furthermore, expression of a constitutively active form of STAT3 leads to marked increases in HCV replication, whereas, conversely, chemical inhibition and small interfering RNA (siRNA) knockdown of STAT3 leads to significant decreases in HCV RNA levels. This strongly implicates STAT3 as a proviral host factor. As STAT3 is a transcription factor, up-regulation of a distinct set of STAT3-dependent genes may create an environment that is favorable for HCV replication. However, STAT3 has recently been demonstrated to positively regulate microtubule (MT) dynamics, by way of a direct sequestration of the MT depolymerizing protein Stathmin 1 (STMN1), and we provide evidence that STAT3 may exert its effect on the HCV life cycle by way of positive regulation of MT dynamics. CONCLUSION: We have demonstrated that STAT3 plays a role in the life cycle of HCV and have clarified the role of STAT3 as a proviral host factor.


Asunto(s)
Hepacivirus/fisiología , Factor de Transcripción STAT3/fisiología , Carcinoma Hepatocelular/etiología , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/etiología , Microtúbulos/fisiología , ARN Interferente Pequeño/genética , Factor de Transcripción STAT3/antagonistas & inhibidores , Estatmina/fisiología , Replicación Viral
15.
Blood ; 120(4): 778-88, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22677126

RESUMEN

Macrophages are key target cells for HIV-1. HIV-1(BaL) induced a subset of interferon-stimulated genes in monocyte-derived macrophages (MDMs), which differed from that in monocyte-derived dendritic cells and CD4 T cells, without inducing any interferons. Inhibition of type I interferon induction was mediated by HIV-1 inhibition of interferon-regulated factor (IRF3) nuclear translocation. In MDMs, viperin was the most up-regulated interferon-stimulated genes, and it significantly inhibited HIV-1 production. HIV-1 infection disrupted lipid rafts via viperin induction and redistributed viperin to CD81 compartments, the site of HIV-1 egress by budding in MDMs. Exogenous farnesol, which enhances membrane protein prenylation, reversed viperin-mediated inhibition of HIV-1 production. Mutagenesis analysis in transfected cell lines showed that the internal S-adenosyl methionine domains of viperin were essential for its antiviral activity. Thus viperin may contribute to persistent noncytopathic HIV-1 infection of macrophages and possibly to biologic differences with HIV-1-infected T cells.


Asunto(s)
Infecciones por VIH/virología , VIH-1/patogenicidad , Macrófagos/virología , Monocitos/virología , Proteínas/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Antivirales/metabolismo , Biomarcadores/metabolismo , Western Blotting , Células Dendríticas/citología , Células Dendríticas/metabolismo , Células Dendríticas/virología , Farnesol/farmacología , Citometría de Flujo , Perfilación de la Expresión Génica , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , VIH-1/genética , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Interferones/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Datos de Secuencia Molecular , Monocitos/citología , Monocitos/metabolismo , Mutagénesis Sitio-Dirigida , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Prenilación de Proteína , Proteínas/antagonistas & inhibidores , Proteínas/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
16.
J Virol Methods ; 326: 114907, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432358

RESUMEN

Adenovirus protein VII (pVII) is a highly basic core protein, bearing resemblance to mammalian histones. Despite its diverse functions, a comprehensive understanding of its structural intricacies and the mechanisms underlying its functions remain elusive, primarily due to the complexity of producing a good amount of soluble pVII. This study aimed to optimise the expression and purification of recombinant pVII from four different adenoviruses with a simple vector construct. This study successfully determined the optimal conditions for efficiently purifying pVII across four adenovirus species, revealing the differential preference for bacterial expression systems. The One Shot BL21 Star (DE3) proved favourable over Rosetta 2 (DE3) pLysS with consistent levels of expression between IPTG-induced and auto-induction. We demonstrated that combining chemical and mechanical cell lysis is possible and highly effective. Other noteworthy benefits were observed in using RNase during sample processing. The addition of RNase has significantly improved the quality and quantity of the purified protein as confirmed by chromatographic and western blot analyses. These findings established a solid groundwork for pVII purification methodologies and carry the significant potential to assist in unveiling the core structure of pVII, its arrangement within the core, DNA condensation intricacies, and potential pathways for nuclear transport.


Asunto(s)
Infecciones por Adenoviridae , Proteínas del Núcleo Viral , Animales , Proteínas del Núcleo Viral/genética , Adenoviridae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ribonucleasas/metabolismo , Mamíferos/metabolismo
17.
mBio ; 15(2): e0249523, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132636

RESUMEN

Wolbachia are a genus of insect endosymbiotic bacteria which includes strains wMel and wAlbB that are being utilized as a biocontrol tool to reduce the incidence of Aedes aegypti-transmitted viral diseases like dengue. However, the precise mechanisms underpinning the antiviral activity of these Wolbachia strains are not well defined. Here, we generated a panel of Ae. aegypti-derived cell lines infected with antiviral strains wMel and wAlbB or the non-antiviral Wolbachia strain wPip to understand host cell morphological changes specifically induced by antiviral strains. Antiviral strains were frequently found to be entirely wrapped by the host endoplasmic reticulum (ER) membrane, while wPip bacteria clustered separately in the host cell cytoplasm. ER-derived lipid droplets (LDs) increased in volume in wMel- and wAlbB-infected cell lines and mosquito tissues compared to cells infected with wPip or Wolbachia-free controls. Inhibition of fatty acid synthase (required for triacylglycerol biosynthesis) reduced LD formation and significantly restored ER-associated dengue virus replication in cells occupied by wMel. Together, this suggests that antiviral Wolbachia strains may specifically alter the lipid composition of the ER to preclude the establishment of dengue virus (DENV) replication complexes. Defining Wolbachia's antiviral mechanisms will support the application and longevity of this effective biocontrol tool that is already being used at scale.IMPORTANCEAedes aegypti transmits a range of important human pathogenic viruses like dengue. However, infection of Ae. aegypti with the insect endosymbiotic bacterium, Wolbachia, reduces the risk of mosquito to human viral transmission. Wolbachia is being utilized at field sites across more than 13 countries to reduce the incidence of viruses like dengue, but it is not well understood how Wolbachia induces its antiviral effects. To examine this at the subcellular level, we compared how different strains of Wolbachia with varying antiviral strengths associate with and modify host cell structures. Strongly antiviral strains were found to specifically associate with the host endoplasmic reticulum and induce striking impacts on host cell lipid droplets. Inhibiting Wolbachia-induced lipid redistribution partially restored dengue virus replication demonstrating this is a contributing role for Wolbachia's antiviral activity. These findings provide new insights into how antiviral Wolbachia strains associate with and modify Ae. aegypti host cells.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Wolbachia , Animales , Humanos , Virus del Dengue/fisiología , Wolbachia/fisiología , Gotas Lipídicas , Replicación Viral , Retículo Endoplásmico , Antivirales , Lípidos
18.
J Extracell Biol ; 2(3): e77, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38938415

RESUMEN

Cellular communication is essential for effective coordination of biological processes. One major form of intercellular communication occurs via the release of extracellular vesicles (EVs). These vesicles mediate intercellular communication through the transfer of their cargo and are actively explored for their role in various diseases and their potential therapeutic and diagnostic applications. Conversely, lipid droplets (LDs) are vesicles that transfer cargo within cells. Lipid droplets play roles in various diseases and evidence for their ability to transfer cargo between cells is emerging. To date, there has been little interdisciplinary research looking at the similarities and interactions between these two classes of small lipid vesicles. This review will compare the commonalities and differences between EVs and LDs including their biogenesis and secretion, isolation and characterisation methodologies, composition, and general heterogeneity and discuss challenges and opportunities in both fields.

19.
Hepatology ; 54(5): 1506-17, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22045669

RESUMEN

UNLABELLED: The interferon-stimulated gene, viperin, has been shown to have antiviral activity against hepatitis C virus (HCV) in the context of the HCV replicon, although the molecular mechanisms responsible are not well understood. Here, we demonstrate that viperin plays an integral part in the ability of interferon to limit the replication of cell-culture-derived HCV (JFH-1) that accurately reflects the complete viral life cycle. Using confocal microscopy and fluorescence resonance energy transfer (FRET) analysis, we demonstrate that viperin localizes and interacts with HCV nonstructural protein 5A (NS5A) at the lipid-droplet (LD) interface. In addition, viperin also associates with NS5A and the proviral cellular factor, human vesicle-associated membrane protein-associated protein subtype A (VAP-A), at the HCV replication complex. The ability of viperin to limit HCV replication was dependent on residues within the C-terminus, as well as an N-terminal amphipathic helix. Removal of the amphipathic helix-redirected viperin from the cytosolic face of the endoplasmic reticulum and the LD to a homogenous cytoplasmic distribution, coinciding with a loss of antiviral effect. C-terminal viperin mutants still localized to the LD interface and replication complexes, but did not interact with NS5A proteins, as determined by FRET analysis. CONCLUSION: In conclusion, we propose that viperin interacts with NS5A and the host factor, VAP-A, to limit HCV replication at the replication complex. This highlights the complexity of the host control of viral replication by interferon-stimulated gene expression.


Asunto(s)
Hepacivirus/crecimiento & desarrollo , Hepatitis C Crónica/virología , Proteínas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología , Carcinoma Hepatocelular , Línea Celular Tumoral , Hepacivirus/metabolismo , Humanos , Interferón-alfa/metabolismo , Neoplasias Hepáticas , Mutagénesis/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas/genética , ARN Interferente Pequeño/farmacología , Proteínas de Transporte Vesicular/metabolismo
20.
J Infect Dis ; 204(12): 1927-35, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22006994

RESUMEN

Most patients with human immunodeficiency virus (HIV) who remain CD4(+) T-cell deficient on antiretroviral therapy (ART) exhibit marked immune activation. As CD4(+) T-cell activation may be mediated by microbial translocation or interferon-alpha (IFN-α), we examined these factors in HIV patients with good or poor CD4(+) T-cell recovery on long-term ART. Messenger RNA levels for 3 interferon-stimulated genes were increased in CD4(+) T cells of patients with poor CD4(+) T-cell recovery, whereas levels in patients with good recovery did not differ from those in healthy controls. Poor CD4(+) T-cell recovery was also associated with CD4(+) T-cell expression of markers of activation, senescence, and apoptosis, and with increased serum levels of the lipopolysaccharide receptor and soluble CD14, but these were not significantly correlated with expression of the interferon-stimulated genes. Therefore, CD4(+) T-cell recovery may be adversely affected by the effects of IFN-α, which may be amenable to therapeutic intervention.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Expresión Génica/efectos de los fármacos , Infecciones por VIH/inmunología , Interferón-alfa/farmacología , ARN Mensajero/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Adulto , Antirretrovirales/uso terapéutico , Apoptosis , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Antígenos CD57/sangre , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Estudios Transversales , Femenino , Expresión Génica/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Antígenos HLA-DR/sangre , Humanos , Interferón-alfa/genética , Interferón-alfa/inmunología , Receptores de Lipopolisacáridos/sangre , Lipopolisacáridos/sangre , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Proteínas de Unión al ARN , Factores de Transcripción/sangre , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética , Receptor fas/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA