Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Development ; 149(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35312765

RESUMEN

Molecular mechanisms controlling the formation, stabilisation and maintenance of blood vessel connections remain poorly defined. Here, we identify blood flow and the large extracellular protein Svep1 as co-modulators of vessel anastomosis during developmental angiogenesis in zebrafish embryos. Both loss of Svep1 and blood flow reduction contribute to defective anastomosis of intersegmental vessels. The reduced formation and lumenisation of the dorsal longitudinal anastomotic vessel (DLAV) is associated with a compensatory increase in Vegfa/Vegfr pERK signalling, concomittant expansion of apelin-positive tip cells, but reduced expression of klf2a. Experimentally, further increasing Vegfa/Vegfr signalling can rescue the DLAV formation and lumenisation defects, whereas its inhibition dramatically exacerbates the loss of connectivity. Mechanistically, our results suggest that flow and Svep1 co-regulate the stabilisation of vascular connections, in part by modulating the Vegfa/Vegfr signalling pathway.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Anastomosis Quirúrgica , Animales , Morfogénesis , Neovascularización Fisiológica/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Development ; 146(21)2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31597659

RESUMEN

A dense local vascular network is crucial for pancreatic endocrine cells to sense metabolites and secrete hormones, and understanding the interactions between the vasculature and the islets may allow for therapeutic modulation in disease conditions. Using live imaging in two models of vascular disruption in zebrafish, we identified two distinct roles for the pancreatic vasculature. At larval stages, expression of a dominant negative version of Vegfaa (dnVegfaa) in ß-cells led to vascular and endocrine cell disruption with a minor impairment in ß-cell function. In contrast, expression of a soluble isoform of Vegf receptor 1 (sFlt1) in ß-cells blocked the formation of the pancreatic vasculature and drastically stunted glucose response, although islet architecture was not affected. Notably, these effects of dnVegfaa or sFlt1 were not observed in animals lacking vegfaa, vegfab, kdrl, kdr or flt1 function, indicating that they interfere with multiple ligands and/or receptors. In adults, disrupted islet architecture persisted in dnVegfaa-expressing animals, whereas sFlt1-expressing animals displayed large sheets of ß-cells along their pancreatic ducts, accompanied by impaired glucose tolerance in both models. Thus, our study reveals novel roles for the vasculature in patterning and function of the islet.


Asunto(s)
Islotes Pancreáticos/citología , Páncreas/irrigación sanguínea , Animales , Glucemia/análisis , Regulación del Desarrollo de la Expresión Génica , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Proteínas Fluorescentes Verdes/metabolismo , Ligandos , Microscopía Fluorescente , Mutación , Páncreas/embriología , Transgenes , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
3.
Development ; 146(14)2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31142539

RESUMEN

An early step in pancreas development is marked by the expression of the transcription factor Pdx1 within the pancreatic endoderm, where it is required for the specification of all endocrine cell types. Subsequently, Pdx1 expression becomes restricted to the ß-cell lineage, where it plays a central role in ß-cell function. This pivotal role of Pdx1 at various stages of pancreas development makes it an attractive target to enhance pancreatic ß-cell differentiation and increase ß-cell function. In this study, we used a newly generated zebrafish reporter to screen over 8000 small molecules for modulators of pdx1 expression. We found four hit compounds and validated their efficacy at different stages of pancreas development. Notably, valproic acid treatment increased pancreatic endoderm formation, while inhibition of TGFß signaling led to α-cell to ß-cell transdifferentiation. HC toxin, another HDAC inhibitor, enhances ß-cell function in primary mouse and human islets. Thus, using a whole organism screening strategy, this study identified new pdx1 expression modulators that can be used to influence different steps in pancreas and ß-cell development.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Islotes Pancreáticos/embriología , Modelos Animales , Organogénesis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/análisis , Pez Cebra , Animales , Animales Modificados Genéticamente , Células COS , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Transdiferenciación Celular/efectos de los fármacos , Transdiferenciación Celular/genética , Células Cultivadas , Chlorocebus aethiops , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/aislamiento & purificación , Inhibidores de Histona Desacetilasas/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/crecimiento & desarrollo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Organogénesis/genética , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Transactivadores/genética , Transactivadores/metabolismo , Ácido Valproico/aislamiento & purificación , Ácido Valproico/farmacología , Pez Cebra/embriología , Pez Cebra/genética
4.
Semin Cell Dev Biol ; 31: 106-14, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24813365

RESUMEN

The vasculature consists of an extensively branched network of blood and lymphatic vessels that ensures the efficient circulation and thereby the supply of all tissues with oxygen and nutrients. Research within the last decade has tremendously advanced our understanding of how this complex network is formed, how angiogenic growth is controlled and how differences between individual endothelial cells contribute to achieving this complex pattern. The small size and the optical clarity of the zebrafish embryo in combination with the advancements in imaging technologies cleared the way for the zebrafish as an important in vivo model for elucidating the mechanisms of angiogenesis. In this review we discuss the recent contributions of the analysis of zebrafish vascular development on how vessels establish their characteristic morphology and become patent. We focus on the morphogenetic cellular behaviors as well as the molecular mechanisms that drive these processes in the developing zebrafish embryo.


Asunto(s)
Neovascularización Fisiológica , Pez Cebra , Animales , Endotelio Vascular/citología , Endotelio Vascular/crecimiento & desarrollo , Endotelio Vascular/metabolismo , Pez Cebra/embriología
5.
Development ; 140(13): 2776-86, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23698350

RESUMEN

The formation and lumenization of blood vessels has been studied in some detail, but there is little understanding of the morphogenetic mechanisms by which endothelial cells (ECs) forming large caliber vessels aggregate, align themselves and finally form a lumen that can support blood flow. Here, we focus on the development of the zebrafish common cardinal veins (CCVs), which collect all the blood from the embryo and transport it back to the heart. We show that the angioblasts that eventually form the definitive CCVs become specified as a separate population distinct from the angioblasts that form the lateral dorsal aortae. The subsequent development of the CCVs represents a novel mechanism of vessel formation, during which the ECs delaminate and align along the inner surface of an existing luminal space. Thereby, the CCVs are initially established as open-ended endothelial tubes, which extend as single EC sheets along the flow routes of the circulating blood and eventually enclose the entire lumen in a process that we term 'lumen ensheathment'. Furthermore, we found that the initial delamination of the ECs as well as the directional migration within the EC sheet depend on Cadherin 5 function. By contrast, EC proliferation within the growing CCV is controlled by Vascular endothelial growth factor C, which is provided by circulating erythrocytes. Our findings not only identify a novel mechanism of vascular lumen formation, but also suggest a new form of developmental crosstalk between hematopoietic and endothelial cell lineages.


Asunto(s)
Embrión no Mamífero/metabolismo , Venas/embriología , Venas/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Angiogenesis ; 18(4): 463-75, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26198291

RESUMEN

Analysis of developmental angiogenesis can help to identify regulatory networks, which also contribute to disease-related vascular growth. Vascular endothelial growth factors (Vegf) drive angiogenic processes such as sprouting, endothelial cell (EC) migration and proliferation. However, how Vegf expression is regulated during development is not well understood. By analyzing developmental zebrafish angiogenesis, we have identified Metallothionein 2 (Mt2) as a novel regulator of vegfc expression. While Metallothioneins (Mts) have been extensively analyzed for their capability of regulating homeostasis and metal detoxification, we demonstrate that Mt2 is required for EC migration, proliferation and angiogenic sprouting upstream of vegfc expression. We further demonstrate that another Mt family member cannot compensate Mt2 deficiency and therefore postulate that Mt2 regulates angiogenesis independent of its canonical Mt function. Our data not only reveal a non-canonical function of Mt2 in angiogenesis, but also propose Mt2 as a novel regulator of vegfc expression.


Asunto(s)
Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Metalotioneína/metabolismo , Neovascularización Fisiológica/fisiología , Transcripción Genética/fisiología , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/metabolismo , Animales , Células Endoteliales/citología , Metalotioneína/genética , Factor C de Crecimiento Endotelial Vascular/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
iScience ; 27(5): 109696, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38689644

RESUMEN

Popeye domain containing (POPDC) proteins are predominantly expressed in the heart and skeletal muscle, modulating the K2P potassium channel TREK-1 in a cAMP-dependent manner. POPDC1 and POPDC2 variants cause cardiac conduction disorders with or without muscular dystrophy. Searching for POPDC2-modulated ion channels using a functional co-expression screen in Xenopus oocytes, we found POPDC proteins to modulate the cardiac sodium channel Nav1.5. POPDC proteins downregulate Nav1.5 currents in a cAMP-dependent manner by reducing the surface expression of the channel. POPDC2 and Nav1.5 are both expressed in different regions of the murine heart and consistently POPDC2 co-immunoprecipitates with Nav1.5 from native cardiac tissue. Strikingly, the knock-down of popdc2 in embryonic zebrafish caused an increased upstroke velocity and overshoot of cardiac action potentials. The POPDC modulation of Nav1.5 provides a new mechanism to regulate cardiac sodium channel densities under sympathetic stimulation, which is likely to have a functional impact on cardiac physiology and inherited arrhythmias.

8.
Dev Cell ; 58(3): 224-238.e7, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36693371

RESUMEN

Endothelial cells (ECs) line blood vessels and serve as a niche for hematopoietic stem and progenitor cells (HSPCs). Recent data point to tissue-specific EC specialization as well as heterogeneity; however, it remains unclear how ECs acquire these properties. Here, by combining live-imaging-based lineage-tracing and single-cell transcriptomics in zebrafish embryos, we identify an unexpected origin for part of the vascular HSPC niche. We find that islet1 (isl1)-expressing cells are the progenitors of the venous ECs that constitute the majority of the HSPC niche. These isl1-expressing cells surprisingly originate from the endoderm and differentiate into ECs in a process dependent on Bmp-Smad signaling and subsequently requiring npas4l (cloche) function. Single-cell RNA sequencing analyses show that isl1-derived ECs express a set of genes that reflect their distinct origin. This study demonstrates that endothelial specialization in the HSPC niche is determined at least in part by the origin of the ECs.


Asunto(s)
Células Endoteliales , Pez Cebra , Animales , Endodermo , Células Madre Hematopoyéticas/fisiología , Endotelio
9.
Elife ; 112022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35225788

RESUMEN

During cardiac development, endocardial cells (EdCs) produce growth factors to promote myocardial morphogenesis and growth. In particular, EdCs produce neuregulin which is required for ventricular cardiomyocytes (CMs) to seed the multicellular ridges known as trabeculae. Defects in neuregulin signaling, or in endocardial sprouting toward CMs, cause hypotrabeculation. However, the mechanisms underlying endocardial sprouting remain largely unknown. Here, we first show by live imaging in zebrafish embryos that EdCs interact with CMs via dynamic membrane protrusions. After touching CMs, these protrusions remain in close contact with their target despite the vigorous cardiac contractions. Loss of the CM-derived peptide Apelin, or of the Apelin receptor, which is expressed in EdCs, leads to reduced endocardial sprouting and hypotrabeculation. Mechanistically, neuregulin signaling requires endocardial protrusions to induce extracellular signal-regulated kinase (Erk) activity in CMs and trigger their delamination. Altogether, these data show that Apelin signaling-dependent endocardial protrusions modulate CM behavior during trabeculation.


Asunto(s)
Endocardio , Pez Cebra , Animales , Apelina/metabolismo , Endocardio/metabolismo , Miocitos Cardíacos/metabolismo , Neurregulinas/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Cardiovasc Res ; 118(12): 2665-2687, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34609500

RESUMEN

AIMS: Mammalian models have been instrumental in investigating adult heart function and human disease. However, electrophysiological differences with human hearts and high costs motivate the need for non-mammalian models. The zebrafish is a well-established genetic model to study cardiovascular development and function; however, analysis of cardiovascular phenotypes in adult specimens is particularly challenging as they are opaque. METHODS AND RESULTS: Here, we optimized and combined multiple imaging techniques including echocardiography, magnetic resonance imaging, and micro-computed tomography to identify and analyse cardiovascular phenotypes in adult zebrafish. Using alk5a/tgfbr1a mutants as a case study, we observed morphological and functional cardiovascular defects that were undetected with conventional approaches. Correlation analysis of multiple parameters revealed an association between haemodynamic defects and structural alterations of the heart, as observed clinically. CONCLUSION: We report a new, comprehensive, and sensitive platform to identify otherwise indiscernible cardiovascular phenotypes in adult zebrafish.


Asunto(s)
Sistema Cardiovascular , Pez Cebra , Animales , Ecocardiografía , Corazón , Humanos , Mamíferos , Microtomografía por Rayos X , Pez Cebra/genética
11.
ACS Pharmacol Transl Sci ; 3(4): 676-689, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32832870

RESUMEN

The G protein-coupled receptor 182 (GPR182) is an orphan GPCR, the expression of which is enriched in embryonic endothelial cells (ECs). However, the physiological role and molecular mechanism of action of GPR182 are unknown. Here, we show that GPR182 negatively regulates definitive hematopoiesis in zebrafish and mice. In zebrafish, gpr182 expression is enriched in the hemogenic endothelium (HE), and gpr182 -/- display an increased expression of HE and hematopoietic stem cell (HSC) marker genes. Notably, we find an increased number of myeloid cells in gpr182 -/- compared to wild-type. Further, by time-lapse imaging of zebrafish embryos during the endothelial-to-hematopoietic transition, we find that HE/HSC cell numbers are increased in gpr182 -/- compared to wild-type. GPR182 -/- mice also exhibit an increased number of myeloid cells compared to wild-type, indicating a conserved role for GPR182 in myelopoiesis. Using cell-based small molecule screening and transcriptomic analyses, we further find that GPR182 regulates the leukotriene B4 (LTB4) biosynthesis pathway. Taken together, these data indicate that GPR182 is a negative regulator of definitive hematopoiesis in zebrafish and mice, and provide further evidence for LTB4 signaling in HSC biology.

12.
Dev Cell ; 52(1): 9-20.e7, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31786069

RESUMEN

Cardiac valve disease can lead to severe cardiac dysfunction and is thus a frequent cause of morbidity and mortality. Its main treatment is valve replacement, which is currently greatly limited by the poor recellularization and tissue formation potential of the implanted valves. As we still lack suitable animal models to identify modulators of these processes, here we used adult zebrafish and found that, upon valve decellularization, they initiate a rapid regenerative program that leads to the formation of new functional valves. After injury, endothelial and kidney marrow-derived cells undergo cell cycle re-entry and differentiate into new extracellular matrix-secreting valve cells. The TGF-ß signaling pathway promotes the regenerative process by enhancing progenitor cell proliferation as well as valve cell differentiation. These findings reveal a key role for TGF-ß signaling in cardiac valve regeneration and establish the zebrafish as a model to identify and test factors promoting cardiac valve recellularization and growth.


Asunto(s)
Diferenciación Celular , Endotelio/citología , Válvulas Cardíacas/citología , Riñón/citología , Regeneración , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Ciclo Celular , Endotelio/metabolismo , Matriz Extracelular/metabolismo , Válvulas Cardíacas/metabolismo , Riñón/metabolismo , Modelos Animales , Ingeniería de Tejidos/métodos , Pez Cebra/metabolismo
13.
Dev Cell ; 51(4): 503-515.e4, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31743664

RESUMEN

Defective coronary network function and insufficient blood supply are both cause and consequence of myocardial infarction. Efficient revascularization after infarction is essential to support tissue repair and function. Zebrafish hearts exhibit a remarkable ability to regenerate, and coronary revascularization initiates within hours of injury, but how this process is regulated remains unknown. Here, we show that revascularization requires a coordinated multi-tissue response culminating with the formation of a complex vascular network available as a scaffold for cardiomyocyte repopulation. During a process we term "coronary-endocardial anchoring," new coronaries respond by sprouting (1) superficially within the regenerating epicardium and (2) intra-ventricularly toward the activated endocardium. Mechanistically, superficial revascularization is guided by epicardial Cxcl12-Cxcr4 signaling and intra-ventricular sprouting by endocardial Vegfa signaling. Our findings indicate that the injury-activated epicardium and endocardium support cardiomyocyte replenishment initially through the guidance of coronary sprouting. Simulating this process in the injured mammalian heart should help its healing.


Asunto(s)
Miocitos Cardíacos/fisiología , Neovascularización Fisiológica/fisiología , Regeneración/fisiología , Animales , Proliferación Celular/fisiología , Quimiocina CXCL12/metabolismo , Señales (Psicología) , Endocardio/fisiología , Corazón/fisiología , Ventrículos Cardíacos/metabolismo , Revascularización Miocárdica/métodos , Miocitos Cardíacos/metabolismo , Pericardio/fisiología , Receptores CXCR4/metabolismo , Transducción de Señal/fisiología , Cicatrización de Heridas/fisiología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
14.
Nat Commun ; 7: 11805, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27248505

RESUMEN

Endothelial cells (ECs) respond to shear stress by aligning in the direction of flow. However, how ECs respond to flow in complex in vivo environments is less clear. Here we describe an endothelial-specific transgenic zebrafish line, whereby the Golgi apparatus is labelled to allow for in vivo analysis of endothelial polarization. We find that most ECs polarize within 4.5 h after the onset of vigorous blood flow and, by manipulating cardiac function, observe that flow-induced EC polarization is a dynamic and reversible process. Based on its role in EC migration, we analyse the role of Apelin signalling in EC polarization and find that it is critical for this process. Knocking down Apelin receptor function in human primary ECs also affects their polarization. Our study provides new tools to analyse the mechanisms of EC polarization in vivo and reveals an important role in this process for a signalling pathway implicated in cardiovascular disease.


Asunto(s)
Receptores de Apelina/genética , Apelina/genética , Polaridad Celular , Quimiocinas/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Apelina/metabolismo , Receptores de Apelina/metabolismo , Fenómenos Biomecánicos , Movimiento Celular , Quimiocinas/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Aparato de Golgi/metabolismo , Hemorreología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/ultraestructura , Humanos , Hibridación Fluorescente in Situ , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Transducción de Señal , Estrés Mecánico , Pez Cebra , Proteínas de Pez Cebra/metabolismo
15.
Elife ; 42015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26017639

RESUMEN

A key step in the de novo formation of the embryonic vasculature is the migration of endothelial precursors, the angioblasts, to the position of the future vessels. To form the first axial vessels, angioblasts migrate towards the midline and coalesce underneath the notochord. Vascular endothelial growth factor has been proposed to serve as a chemoattractant for the angioblasts and to regulate this medial migration. Here we challenge this model and instead demonstrate that angioblasts rely on their intrinsic expression of Apelin receptors (Aplr, APJ) for their migration to the midline. We further show that during this angioblast migration Apelin receptor signaling is mainly triggered by the recently discovered ligand Elabela (Ela). As neither of the ligands Ela or Apelin (Apln) nor their receptors have previously been implicated in regulating angioblast migration, we hereby provide a novel mechanism for regulating vasculogenesis, with direct relevance to physiological and pathological angiogenesis.


Asunto(s)
Movimiento Celular/fisiología , Quimiocinas/metabolismo , Células Endoteliales/citología , Células Progenitoras Endoteliales/fisiología , Modelos Biológicos , Neovascularización Fisiológica/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Clonación Molecular , Cartilla de ADN/genética , Células Progenitoras Endoteliales/metabolismo , Humanos , Hibridación in Situ , Mutagénesis , Pez Cebra
16.
Nat Commun ; 5: 3743, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24806444

RESUMEN

The assembly of individual endothelial cells into multicellular tubes is a complex morphogenetic event in vascular development. Extracellular matrix cues and cell-cell junctional communication are fundamental to tube formation. Together they determine the shape of endothelial cells and the tubular structures that they ultimately form. Little is known regarding how mechanical signals are transmitted between cells to control cell shape changes during morphogenesis. Here we provide evidence that the scaffold protein amotL2 is needed for aortic vessel lumen expansion. Using gene inactivation strategies in zebrafish, mouse and endothelial cell culture systems, we show that amotL2 associates to the VE-cadherin adhesion complex where it couples adherens junctions to contractile actin fibres. Inactivation of amotL2 dissociates VE-cadherin from cytoskeletal tensile forces that affect endothelial cell shape. We propose that the VE-cadherin/amotL2 complex is responsible for transmitting mechanical force between endothelial cells for the coordination of cellular morphogenesis consistent with aortic lumen expansion and function.


Asunto(s)
Antígenos CD/metabolismo , Aorta/crecimiento & desarrollo , Cadherinas/metabolismo , Proteínas Contráctiles/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica/fisiología , Proteínas de Pez Cebra/metabolismo , Citoesqueleto de Actina/metabolismo , Uniones Adherentes/metabolismo , Angiomotinas , Animales , Aorta/citología , Comunicación Celular , Forma de la Célula , Células Endoteliales/citología , Endotelio Vascular/crecimiento & desarrollo , Endotelio Vascular/metabolismo , Matriz Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Morfolinos/genética , Interferencia de ARN , ARN Interferente Pequeño , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA