Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Elife ; 112022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35060900

RESUMEN

Restoring damaged ß-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study ß-cells arising following destruction. We show that most new insulin cells differ from the original ß-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to ß-cell destruction is fast, efficient, and age-independent. Bihormonal cells are transcriptionally close to a subset of δ-cells that we identified in control islets and that are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in ß-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins + bihormonal cells following ß-cell destruction. Our findings support the conclusion that sst1.1 δ-cells possess a pro-ß identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Células Secretoras de Somatostatina/metabolismo , Animales , Femenino , Masculino , Páncreas/citología , Somatostatina/metabolismo , Pez Cebra
2.
Life (Basel) ; 11(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34685459

RESUMEN

The establishment of a functional cardiovascular system is crucial for the development of all vertebrates. Defects in the development of the cardiovascular system lead to cardiovascular diseases, which are among the top 10 causes of death worldwide. However, we are just beginning to understand which signaling pathways guide blood vessel growth in different tissues and organs. The advantages of the model organism zebrafish (Danio rerio) helped to identify novel cellular and molecular mechanisms of vascular growth. In this review we will discuss the current knowledge of vasculogenesis and angiogenesis in the zebrafish embryo. In particular, we describe the molecular mechanisms that contribute to the formation of blood vessels in different vascular beds within the embryo.

3.
Elife ; 92020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32990594

RESUMEN

The development of the cardiac outflow tract (OFT), which connects the heart to the great arteries, relies on a complex crosstalk between endothelial (ECs) and smooth muscle (SMCs) cells. Defects in OFT development can lead to severe malformations, including aortic aneurysms, which are frequently associated with impaired TGF-ß signaling. To better understand the role of TGF-ß signaling in OFT formation, we generated zebrafish lacking the TGF-ß receptor Alk5 and found a strikingly specific dilation of the OFT: alk5-/- OFTs exhibit increased EC numbers as well as extracellular matrix (ECM) and SMC disorganization. Surprisingly, endothelial-specific alk5 overexpression in alk5-/- rescues the EC, ECM, and SMC defects. Transcriptomic analyses reveal downregulation of the ECM gene fibulin-5, which when overexpressed in ECs ameliorates OFT morphology and function. These findings reveal a new requirement for endothelial TGF-ß signaling in OFT morphogenesis and suggest an important role for the endothelium in the etiology of aortic malformations.


Asunto(s)
Endotelio Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Aorta/citología , Aorta/metabolismo , Endotelio Vascular/citología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Proteína smad3/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
4.
Elife ; 92020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32955436

RESUMEN

To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms that govern these processes are incompletely understood. Here, we show that Apelin signaling functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting transcription factor c-Myc. Moreover, APELIN expression is regulated by Notch signaling in human ECs, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown zebrafish embryos. These data provide new insights into fundamental principles of blood vessel formation and Apelin signaling, enabling a better understanding of vascular growth in health and disease.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Quimiocinas/genética , Morfogénesis/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Vasos Sanguíneos/metabolismo , Quimiocinas/metabolismo , Células Endoteliales/metabolismo , Proteínas de Pez Cebra/metabolismo
5.
Elife ; 72018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30520733

RESUMEN

Pathways modulating glucose homeostasis independently of insulin would open new avenues to combat insulin resistance and diabetes. Here, we report the establishment, characterization, and use of a vertebrate 'insulin-free' model to identify insulin-independent modulators of glucose metabolism. insulin knockout zebrafish recapitulate core characteristics of diabetes and survive only up to larval stages. Utilizing a highly efficient endoderm transplant technique, we generated viable chimeric adults that provide the large numbers of insulin mutant larvae required for our screening platform. Using glucose as a disease-relevant readout, we screened 2233 molecules and identified three that consistently reduced glucose levels in insulin mutants. Most significantly, we uncovered an insulin-independent beneficial role for androgen receptor antagonism in hyperglycemia, mostly by reducing fasting glucose levels. Our study proposes therapeutic roles for androgen signaling in diabetes and, more broadly, offers a novel in vivo model for rapid screening and decoupling of insulin-dependent and -independent mechanisms.


Asunto(s)
Glucosa/metabolismo , Hiperglucemia/genética , Insulina/genética , Receptores Androgénicos/genética , Antagonistas de Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Homeostasis , Hiperglucemia/metabolismo , Hiperglucemia/patología , Resistencia a la Insulina/genética , Receptores Androgénicos/química , Transducción de Señal/genética , Pez Cebra/genética
6.
Elife ; 52016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27852438

RESUMEN

Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs.


Asunto(s)
Diferenciación Celular/genética , Organogénesis/genética , Médula Espinal/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Proteínas de Pez Cebra/genética , Animales , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Mosaicismo , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Transducción de Señal/genética , Médula Espinal/irrigación sanguínea , Médula Espinal/crecimiento & desarrollo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA