Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Transfus Med Hemother ; 51(4): 252-264, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39021419

RESUMEN

Introduction: With over 360 blood group antigens in systems recognized, there are antigens, such as RhD, which demonstrate a quantitative reduction in antigen expression due to nucleotide variants in the non-coding region of the gene that result in aberrant splicing or a regulatory mechanism. This study aimed to evaluate bioinformatically predicted GATA1-binding regulatory motifs in the RHD gene for samples presenting with weak or apparently negative RhD antigen expression but showing normal RHD exons. Methods: Publicly available open chromatin region data were overlayed with GATA1 motif candidates in RHD. Genomic DNA from weak D, Del or D- samples with normal RHD exons (n = 13) was used to confirm RHD zygosity by quantitative PCR. Then, RHD promoter, intron 1, and intron 2 regions were amplified for Sanger sequencing to detect potential disruptions in the GATA1 motif candidates. Electrophoretic mobility shift assay (EMSA) was performed to assess GATA1-binding. Luciferase assays were used to assess transcriptional activity. Results: Bioinformatic analysis identified five of six GATA1 motif candidates in the promoter, intron 1 and intron 2 for investigation in the samples. Luciferase assays showed an enhancement in transcription for GATA1 motifs in intron 1 and for intron 2 only when the R 2 haplotype variant (rs675072G>A) was present. GATA1 motifs were intact in 12 of 13 samples. For one sample with a Del phenotype, a novel RHD c.1-110A>C variant disrupted the GATA1 motif in the promoter which was supported by a lack of a GATA1 supershift in the EMSA and 73% transcriptional activity in the luciferase assay. Two samples were D+/D- chimeras. Conclusion: The bioinformatic predictions enabled the identification of a novel DEL allele, RHD c.1-110A>C, which disrupted the GATA1 motif in the proximal promoter. Although the majority of the samples investigated here remain unexplained, we provide GATA1 targets which may benefit future RHD regulatory investigations.

2.
Blood Transfus ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38814881

RESUMEN

BACKGROUND: The Rh blood group system is highly complex, polymorphic, and immunogenic. The presence of RHD gene variants in RhD negative pregnant women is a challenge in fetal RHD genotyping as it may influence the antenatal management of anti-D prophylaxis. The aim of this study was to determine the efficiency of a non-invasive single-exon approach in the obstetric population of Western Sweden in a 31-month follow up. The frequency and type of maternal RHD variants were explored and the relation to the ethnicity was elucidated. Discrepant results between fetal RHD genotyping and serological blood group typing of newborns were investigated and clarified. MATERIALS AND METHODS: RHD exon 4 was analysed with quantitative real-time PCR technique in a total of 6,948 blood samples from RhD negative women in early pregnancy. All cases with suspected maternal RHD gene and discrepant results observed in newborn samples, were further investigated using both serological and molecular technologies. RESULTS: A total of 43 samples (0.6%) had inconclusive fetal genotyping result due the presence of a maternal RHD gene. These findings were in most cases (>66%) observed in pregnant women of non-European ancestry. Additionally, two novel RHD alleles were found. Seven discrepant results between fetal RHD genotype and serological RhD type of the newborns, were shown to be related to D antigen variants in newborns. Assay sensitivity was 99.95%, specificity 100%, and accuracy 99.97%. DISCUSSION: The single-exon approach for fetal RHD screening early in pregnancy is an appropriate choice in the population of Western Sweden, with a very low frequency of inconclusive results caused by the presence of maternal RHD gene variants. Due to the high sensitivity, specificity, and accuracy of the test, serological typing of neonates born to RhD negative women has no longer been performed at our laboratory since June 2023.

3.
Medicina (B.Aires) ; 69(6): 651-654, nov.-dic. 2009. ilus
Artículo en Español | LILACS | ID: lil-633699

RESUMEN

Un individuo con un fenotipo eritrocitario raro carece de uno o varios antígenos presentes en la mayor parte de la población de pertenencia. Cuando presenta el anticuerpo correspondiente, se pueden producir complicaciones perinatales, transfusionales y/o transplantológicas. Se presenta el caso de una embarazada aloinmunizada derivada a nuestro servicio en la semana 12 de su tercera gesta para su evaluación y seguimiento. El diagnóstico inmunohematológico le asignó el excepcional fenotipo "p" (aproximadamente 1/200 000 individuos), asociado con una mayor tasa de abortos espontáneos y a reacciones transfusionales graves cuando se transfunden unidades incompatibles. El estudio del gen A4GALT demostró la presencia de la mutación c.752C > T en doble dosis. Esta mutación lleva a un cambio de una prolina por una leucina en el residuo 251 de la 4-α-galactosiltransferasa. Por parto inducido por sufrimiento fetal, nace a las 36 semanas una bebé con prueba de antiglobulina (Coombs) directa negativa, eluido reactivo, con ictericia que requirió luminoterapia. Una semana después el neonato fue externado sin secuelas aparentes. Posteriormente, a raíz de una cirugía inminente y la improbabilidad de encontrar sangre compatible, se elaboró un plan para cubrir las posibles demandas. Este caso pone en evidencia la necesidad de contar a nivel nacional con un laboratorio de referencia de inmunohematología y un banco de sangre de grupos raros, que permita resolver con celeridad situaciones que requieran transfundir a estos individuos.


A rare blood group is usually defined as the absence of a high prevalence antigen or the absence of several antigens within a single blood group system. These individuals may develop clinically significant red cell antibodies to the high incidence red cell antigens they lack. A 33-year-old alloimmunized woman was referred to our center at the 12th week of her third pregnancy for evaluation and follow up. The laboratory work-up grouped her as belonging to "p" phenotype, associated with difficulties to find compatible blood for transfusion and a high incidence of recurrent miscarriage. At 36 weeks, a baby girl was born by induced labor due to fetal suffering. With a negative direct antiglobulin test but a positive elution test, she was in the neonatology ward for one week receiving luminotherapy. Homozygosity for a missense mutation at position 752 (c.752C > T) in the A4GALT gene was found to be responsible for the p phenotype. This mutation changes a proline to a leucine at codon 251 of the 4-α-galactosyltransferase. Recently, due to an imminent chirurgical intervention and the impossibility to have compatible blood available for transfusion, an autologous donation plan was designed to satisfy probable demand. This case showed the need for blood bank facilities capable to respond satisfactorily to these situations in Argentina. This would facilitate the storage of cryopreserved blood from individuals with rare blood groups for homologous use or to develop rare blood donors programs.


Asunto(s)
Adulto , Femenino , Humanos , Embarazo , Eritroblastosis Fetal/sangre , Galactosiltransferasas/genética , Mutación Missense , Sistema del Grupo Sanguíneo P/genética , Fenotipo , Secuencia de Bases , Transfusión Sanguínea , Glicosiltransferasas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA