Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38915568

RESUMEN

Progress in histological methods and in microscope technology has enabled dense staining and imaging of axons over large brain volumes, but tracing axons over such volumes requires new computational tools for 3D reconstruction of data acquired from serial sections. We have developed a computational pipeline for automated tracing and volume assembly of densely stained axons imaged over serial sections, which leverages machine learning-based segmentation to enable stitching and alignment with the axon traces themselves. We validated this segmentation-driven approach to volume assembly and alignment of individual axons over centimeter-scale serial sections and show the application of the output traces for analysis of local orientation and for proofreading over aligned volumes. The pipeline is scalable, and combined with recent advances in experimental approaches, should enable new studies of mesoscale connectivity and function over the whole human brain.

2.
Nat Ecol Evol ; 8(6): 1165-1179, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38627529

RESUMEN

Vertebrates rely on rod photoreceptors for vision in low-light conditions. The specialized downstream circuit for rod signalling, called the primary rod pathway, is well characterized in mammals, but circuitry for rod signalling in non-mammals is largely unknown. Here we demonstrate that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA sequencing, we identified two bipolar cell types in zebrafish that are related to mammalian rod bipolar cell (RBCs), the only bipolar type that directly carries rod signals from the outer to the inner retina in the primary rod pathway. By combining electrophysiology, histology and ultrastructural reconstruction of the zebrafish RBCs, we found that, similar to mammalian RBCs, both zebrafish RBC types connect with all rods in their dendritic territory and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells postsynaptic to one RBC type is strikingly similar to that of mammalian RBCs and their amacrine partners, suggesting that the cell types and circuit design of the primary rod pathway emerged before the divergence of teleost fish and mammals. The second RBC type, which forms separate pathways, was either lost in mammals or emerged in fish.


Asunto(s)
Células Bipolares de la Retina , Células Fotorreceptoras Retinianas Bastones , Pez Cebra , Animales , Pez Cebra/fisiología , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Evolución Biológica , Retina/fisiología , Retina/citología , Mamíferos
3.
Res Sq ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37886445

RESUMEN

Vertebrates rely on rod photoreceptors for vision in low-light conditions. Mammals have a specialized downstream circuit for rod signaling called the primary rod pathway, which comprises specific cell types and wiring patterns that are thought to be unique to this lineage. Thus, it has been long assumed that the primary rod pathway evolved in mammals. Here, we challenge this view by demonstrating that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA-sequencing, we identified two bipolar cell (BC) types in zebrafish that are related to mammalian rod BCs (RBCs) of the primary rod pathway. By combining electrophysiology, histology, and ultrastructural reconstruction of the zebrafish RBCs, we found that, like mammalian RBCs, both zebrafish RBC types connect with all rods in their dendritic territory, and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells post-synaptic to one RBC type is strikingly similar to that of mammalian RBCs, suggesting that the cell types and circuit design of the primary rod pathway have emerged before the divergence of teleost fish and amniotes. The second RBC type, which forms separate pathways, is either lost in mammals or emerged in fish.

4.
bioRxiv ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37771914

RESUMEN

Vertebrates rely on rod photoreceptors for vision in low-light conditions1. Mammals have a specialized downstream circuit for rod signaling called the primary rod pathway, which comprises specific cell types and wiring patterns that are thought to be unique to this lineage2-6. Thus, it has been long assumed that the primary rod pathway evolved in mammals3,5-7. Here, we challenge this view by demonstrating that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA-sequencing, we identified two bipolar cell (BC) types in zebrafish that are related to mammalian rod BCs (RBCs) of the primary rod pathway. By combining electrophysiology, histology, and ultrastructural reconstruction of the zebrafish RBCs, we found that, like mammalian RBCs8, both zebrafish RBC types connect with all rods and red-cones in their dendritic territory, and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells post-synaptic to one RBC type is strikingly similar to that of mammalian RBCs. This suggests that the cell types and circuit design of the primary rod pathway may have emerged before the divergence of teleost fish and amniotes (mammals, bird, reptiles). The second RBC type in zebrafish, which forms separate pathways from the first RBC type, is either lost in mammals or emerged in fish to serve yet unknown roles.

5.
bioRxiv ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37425699

RESUMEN

Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to centimeters. Harnessing molecular imaging across three-dimensional samples on this scale requires new types of microscopes with larger fields of view and working distance, as well as higher imaging throughput. We present a new expansion-assisted selective plane illumination microscope (ExA-SPIM) with diffraction-limited and aberration-free performance over a large field of view (85 mm 2 ) and working distance (35 mm). Combined with new tissue clearing and expansion methods, the microscope allows nanoscale imaging of centimeter-scale samples, including entire mouse brains, with diffraction-limited resolutions and high contrast without sectioning. We illustrate ExA-SPIM by reconstructing individual neurons across the mouse brain, imaging cortico-spinal neurons in the macaque motor cortex, and tracing axons in human white matter.

6.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961179

RESUMEN

Expansion microscopy and light sheet imaging enable fine-scale resolution of intracellular features that comprise neural circuits. Most current techniques visualize sparsely distributed features across whole brains or densely distributed features within individual brain regions. Here, we visualize dense distributions of immunolabeled proteins across early visual cortical areas in adult macaque monkeys. This process may be combined with multiphoton or magnetic resonance imaging to produce multimodal atlases in large, gyrencephalic brains.

7.
iScience ; 25(9): 105032, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36117987

RESUMEN

Neurons form stereotyped microcircuits that underlie specific functions. In the vertebrate retina, the primary rod and cone pathways that convey dim and bright light signals, respectively, exhibit distinct wiring patterns. Rod and cone pathways are thought to be assembled separately during development. However, using correlative fluorescence imaging and serial electron microscopy, we show here that cross-pathway interactions are involved to achieve pathway-specific connectivity within the inner retina. We found that A17 amacrine cells, a rod pathway-specific cellular component, heavily bias their synaptogenesis with rod bipolar cells (RBCs) but increase their connectivity with cone bipolar cells (CBCs) when RBCs are largely ablated. This cross-pathway synaptic plasticity occurs during synaptogenesis and is triggered even on partial loss of RBCs. Thus, A17 cells adopt a hierarchical approach in selecting postsynaptic partners from functionally distinct pathways (RBC>CBC), in which contact and/or synaptogenesis with preferred partners (RBCs) influences connectivity with less-preferred partners (CBCs).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA