Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Scand J Med Sci Sports ; 34(1): e14442, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37770233

RESUMEN

Sufficient delivery of oxygen and metabolic substrates, together with removal of waste products, are key elements of muscle performance. Capillaries are the primary site for this exchange in skeletal muscle and the degree of muscle capillarization affects diffusion conditions by influencing mean transit time, capillary surface area and diffusion distance. Muscle capillarization may thus represent a limiting factor for performance. Exercise training increases the number of capillaries per muscle fiber by about 10%-20% within a few weeks in untrained subjects, whereas capillary growth progresses more slowly in well-trained endurance athletes. Studies show that capillaries are tortuous, situated along and across the length of the fibers with an arrangement related to muscle fascicles. Although direct data is lacking, it is possible that years of training not only enhances capillary density but also optimizes the positioning of capillaries, to further improve the diffusion conditions. Muscle capillarization has been shown to increase oxygen extraction during exercise in humans, but direct evidence for a causal link between increased muscle capillarization and performance is scarce. This review covers current knowledge on the implications of muscle capillarization for oxygen and glucose uptake as well as performance. A brief overview of the process of capillary growth and of physical factors, inherent to exercise, which promote angiogenesis, provides the foundation for a discussion on how different training modalities may influence muscle capillary growth. Finally, we identify three areas for future research on the role of capillarization for exercise performance.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas/metabolismo , Ejercicio Físico/fisiología , Capilares , Oxígeno/metabolismo
2.
J Physiol ; 601(11): 2085-2098, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36300822

RESUMEN

Although ageing impairs cardiovascular health in both men and women, the timeline is different between the sexes. This is at least partially attributed to the loss of oestrogen in women at midlife, in connection with menopause. Oestrogen has protective effects on the cardiovascular system, and menopause consequently leads to a rapid and significant decline in cardiovascular health. Notably, oestrogen interacts with its nuclear and membrane receptors leading to changes in proteins of importance for cardiovascular health. Skeletal muscle activity, which affects the expression of many of the same proteins as oestrogen, could potentially counteract the loss of oestrogen at menopause. The hypothesis that exercise can counteract the loss of oestrogen has been explored in several recent studies. It has been found that regular physical activity opposes the detrimental effects not only of ageing, but also of the menopausal transition, on cardiovascular health. Although, vascular benefits can be gained at all ages, initiating physical activity at or soon after menopause may be more effective than at a later time point in life. Intuitively, it is easier to prevent decrements than attempting to regain lost vascular health. This idea is supported by evidence at the molecular level, suggesting that exercise-induced activation of the oestrogen-related receptor-α pathway is more effective soon after menopause compared to later. Together, although a decline in cardiovascular health due to chronological ageing cannot be completely prevented, a physically active lifestyle mitigates age-related cardiovascular impairments. Importantly, regular physical activity through life should always be addressed as the biological norm.


Asunto(s)
Envejecimiento , Sistema Cardiovascular , Masculino , Humanos , Femenino , Envejecimiento/fisiología , Menopausia/fisiología , Estrógenos/metabolismo , Sistema Cardiovascular/metabolismo , Ejercicio Físico/fisiología
3.
Am J Physiol Heart Circ Physiol ; 325(2): H346-H361, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389949

RESUMEN

Although regular physical activity is known to improve cardiovascular health in men, evidence for its beneficial effects in postmenopausal females is less convincing and it remains unclear whether initiation of exercise training soon after, rather than many years after menopause impacts the magnitude of training-induced adaptations. We evaluated exercise-induced changes in markers of thrombotic risk and conduit artery function in recent≤5yr compared with late≥10yr postmenopausal females. Fourteen recent≤5yr and 13 late≥10yr healthy postmenopausal females completed 8 wk of regular intensive exercise training, consisting of floorball and cycling. Markers of thrombotic risk and vascular health were assessed before and after the intervention, and data were analyzed using a linear mixed model. Exercise training reduced markers of thrombotic risk, including an 11% reduction (P = 0.007) in agonist-induced platelet reactivity and a reduction (P = 0.027) in incipient clot microstructure (∼40% reduction in clot mass) in the recent≤5yr but not the late≥10yr (P = 0.380; P = 0.739, respectively) postmenopausal females. There was no change in conduit artery function, as measured by brachial (recent≤5yr, P = 0.804; late≥10yr, P = 0.311) and popliteal artery (recent≤5yr, P = 0.130; late≥10yr, P = 0.434) flow-mediated dilation. Only the late≥10yr postmenopausal females exhibited an increase (by 9.6%, P = 0.022) in intracellular adhesion molecule-1 levels after training, which may have impacted the thrombogenic adaptation in this group. These findings suggest that 8 wk of high-intensity exercise training reduces thrombotic risk in recent≤5yr, but not late≥10yr postmenopausal females. Thus, regular physical activity initiated soon after, rather than many years after menopause and at a higher age, may be more efficient for reducing thrombogenic risk.NEW & NOTEWORTHY Eight weeks of high-intensity exercise training reduces platelet reactivity as well as blood clot density and strength in females ≤5 yr past menopause but not in females ≥10 yr past menopause. The divergent response in the late postmenopausal females may be explained by training-induced low-grade systemic inflammation. These findings suggest that regular physical activity initiated soon after menopause, compared with many years after menopause, may be more efficient for reducing the risk of blood clots.


Asunto(s)
Posmenopausia , Trombosis , Masculino , Humanos , Femenino , Lactante , Menopausia , Trombosis/prevención & control , Plaquetas , Ejercicio Físico/fisiología
4.
Br J Clin Pharmacol ; 89(7): 2179-2189, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36764326

RESUMEN

AIMS: The aim of this study is to examine whether colchicine improves ß adrenoceptor-mediated vasodilation in humans by conducting a double-blinded, placebo-controlled intervention study. Colchicine treatment has known beneficial effects on cardiovascular health and reduces the incidence of cardiovascular disease. Studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation, but this has not been determined in humans. METHODS: Middle-aged men with essential hypertension were randomly assigned firstly to acute treatment with either 0.5 mg colchicine (n = 19) or placebo (n = 12). They were subsequently re-randomized for 3 weeks of treatment with either colchicine 0.5 mg twice daily (n = 16) or placebo (n = 15) followed by a washout period of 48-72 h. The vasodilator responses to isoprenaline, acetylcholine and sodium nitroprusside were determined as well as arterial pressure, arterial compliance and plasma inflammatory markers. RESULTS: Acute colchicine treatment increased isoprenaline (by 38% for the highest dose) as well as sodium nitroprusside (by 29% main effect) -induced vasodilation but had no effect on the response to acetylcholine. The 3-week colchicine treatment followed by a washout period did not induce an accumulated or sustained effect on the ß adrenoceptor response, and there was no effect on arterial pressure, arterial compliance or the level of measured inflammatory markers. CONCLUSION: Colchicine acutely enhances ß adrenoceptor- and nitric oxide-mediated changes in vascular conductance in humans, supporting that the mechanism previously demonstrated in rodents, translates to humans. The results provide novel translational evidence for a transient enhancing effect of colchicine on ß adrenoceptor-mediated vasodilation in humans with essential hypertension. CONDENSED ABSTRACT: Preclinical studies in isolated rodent arteries have shown that colchicine can enhance ß adrenoceptor-mediated vasodilation. Here we show that this effect of colchicine can be translated to humans. Acute colchicine treatment was found to increase both isoprenaline- and sodium nitroprusside-induced vasodilation. The study provides the first translational evidence for a transient ß adrenoceptor-mediated vasodilatory effect of colchicine in humans. The finding of an acute effect suggests that it may be clinically important to maintain an adequate bioavailability of colchicine.


Asunto(s)
Acetilcolina , Vasodilatación , Masculino , Persona de Mediana Edad , Humanos , Nitroprusiato/farmacología , Isoproterenol/farmacología , Acetilcolina/farmacología , Colchicina/farmacología , Hipertensión Esencial , Receptores Adrenérgicos
5.
Scand J Med Sci Sports ; 33(5): 586-596, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36587373

RESUMEN

BACKGROUND: This study tested the hypothesis that training reduces resting sympathetic activity and improves baroreflex control in both hypertensive and normotensive men but reduces blood pressure only in hypertensive men. METHODS: Middle-aged/older un-medicated stage-1 hypertensive males (mean age 55 ± 3 years; n = 13) and normotensive controls (mean age 60 ± 5 years; n = 12) participated in 8 weeks of supervised high-intensity interval spinning training. Before and after training, muscle sympathetic nerve activity (MSNA) and blood pressure were measured at rest and during a sympatho-excitatory cold pressor test (CPT). Based on the measurements, baroreceptor sensitivity and baroreceptor threshold were calculated. RESULTS: Resting MSNA and baroreceptor sensitivity were similar for the hypertensive and the normotensive groups. Training lowered MSNA (p < 0.05), expressed as burst frequency (burst/min), overall, and to a similar extent, in both groups (17% and 27%, respectively, in hypertensive and normotensive group), whereas blood pressure was only significantly (p < 0.05) lowered (by 4 mmHg in both systolic and diastolic pressure) in the hypertensive group. Training did not (p > 0.05) alter the MSNA or blood pressure response to CPT or increase baroreceptor sensitivity but reduced (p < 0.05) the baroreceptor threshold with a main effect for both groups. Training adherence and intensity were similar in both groups yet absolute maximal oxygen uptake increased by 15% in the normotensive group only. CONCLUSION: The dissociation between the training induced changes in resting MSNA, lack of change in baroreflex sensitivity and the change in blood pressure, suggests that MSNA is not a main cause of the blood pressure reduction with exercise training in un-medicated middle-aged/older men.


Asunto(s)
Hipertensión , Músculo Esquelético , Masculino , Persona de Mediana Edad , Humanos , Anciano , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Músculo Esquelético/fisiología , Barorreflejo/fisiología , Ejercicio Físico/fisiología , Sistema Nervioso Simpático/fisiología
6.
Eur J Appl Physiol ; 123(7): 1415-1432, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36715739

RESUMEN

Exercise-induced skeletal muscle angiogenesis is a well-known physiological adaptation that occurs in humans in response to exercise training and can lead to endurance performance benefits, as well as improvements in cardiovascular and skeletal tissue health. An increase in capillary density in skeletal muscle improves diffusive oxygen exchange and waste extraction, and thus greater fatigue resistance, which has application to athletes but also to the general population. Exercise-induced angiogenesis can significantly contribute to improvements in cardiovascular and metabolic health, such as the increase in muscle glucose uptake, important for the prevention of diabetes. Recently, our understanding of the mechanisms by which angiogenesis occurs with exercise has grown substantially. This review will detail the biochemical, cellular and biomechanical signals for exercise-induced skeletal muscle angiogenesis, including recent work on extracellular vesicles and circulating angiogenic cells. In addition, the influence of age, sex, exercise intensity/duration, as well as recent observations with the use of blood flow restricted exercise, will also be discussed in detail. This review will provide academics and practitioners with mechanistic and applied evidence for optimising training interventions to promote physical performance through manipulating capillarisation in skeletal muscle.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Capilares , Hemodinámica , Neovascularización Fisiológica
7.
Proc Natl Acad Sci U S A ; 116(48): 24115-24121, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31704768

RESUMEN

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. The major AF susceptibility locus 4q25 establishes long-range interactions with the promoter of PITX2, a transcription factor gene with critical functions during cardiac development. While many AF-linked loci have been identified in genome-wide association studies, mechanistic understanding into how genetic variants, including those at the 4q25 locus, increase vulnerability to AF is mostly lacking. Here, we show that loss of pitx2c in zebrafish leads to adult cardiac phenotypes with substantial similarities to pathologies observed in AF patients, including arrhythmia, atrial conduction defects, sarcomere disassembly, and altered cardiac metabolism. These phenotypes are also observed in a subset of pitx2c+/- fish, mimicking the situation in humans. Most notably, the onset of these phenotypes occurs at an early developmental stage. Detailed analyses of pitx2c loss- and gain-of-function embryonic hearts reveal changes in sarcomeric and metabolic gene expression and function that precede the onset of cardiac arrhythmia first observed at larval stages. We further find that antioxidant treatment of pitx2c-/- larvae significantly reduces the incidence and severity of cardiac arrhythmia, suggesting that metabolic dysfunction is an important driver of conduction defects. We propose that these early sarcomere and metabolic defects alter cardiac function and contribute to the electrical instability and structural remodeling observed in adult fish. Overall, these data provide insight into the mechanisms underlying the development and pathophysiology of some cardiac arrhythmias and importantly, increase our understanding of how developmental perturbations can predispose to functional defects in the adult heart.


Asunto(s)
Arritmias Cardíacas/metabolismo , Proteínas de Homeodominio/genética , Sarcómeros/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Acetilcisteína/farmacología , Animales , Animales Modificados Genéticamente , Antioxidantes/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Trastorno del Sistema de Conducción Cardíaco/etiología , Trastorno del Sistema de Conducción Cardíaco/genética , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Electrocardiografía , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Larva/efectos de los fármacos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Sarcómeros/genética , Sarcómeros/patología , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo
8.
J Physiol ; 599(12): 3081-3100, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33913171

RESUMEN

KEY POINTS: Tamoxifen-inducible skeletal muscle-specific AXIN1 knockout (AXIN1 imKO) in mouse does not affect whole-body energy substrate metabolism. AXIN1 imKO does not affect AICAR or insulin-stimulated glucose uptake in adult skeletal muscle. AXIN1 imKO does not affect adult skeletal muscle AMPK or mTORC1 signalling during AICAR/insulin/amino acid incubation, contraction and exercise. During exercise, α2/ß2/γ3AMPK and AMP/ATP ratio show greater increases in AXIN1 imKO than wild-type in gastrocnemius muscle. ABSTRACT: AXIN1 is a scaffold protein known to interact with >20 proteins in signal transduction pathways regulating cellular development and function. Recently, AXIN1 was proposed to assemble a protein complex essential to catabolic-anabolic transition by coordinating AMPK activation and inactivation of mTORC1 and to regulate glucose uptake-stimulation by both AMPK and insulin. To investigate whether AXIN1 is permissive for adult skeletal muscle function, a phenotypic in vivo and ex vivo characterization of tamoxifen-inducible skeletal muscle-specific AXIN1 knockout (AXIN1 imKO) mice was conducted. AXIN1 imKO did not influence AMPK/mTORC1 signalling or glucose uptake stimulation at rest or in response to different exercise/contraction protocols, pharmacological AMPK activation, insulin or amino acids stimulation. The only genotypic difference observed was in exercising gastrocnemius muscle, where AXIN1 imKO displayed elevated α2/ß2/γ3 AMPK activity and AMP/ATP ratio compared to wild-type mice. Our work shows that AXIN1 imKO generally does not affect skeletal muscle AMPK/mTORC1 signalling and glucose metabolism, probably due to functional redundancy of its homologue AXIN2.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteína Axina/genética , Glucosa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Músculo Esquelético/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida , Animales , Metabolismo Energético , Insulina , Ratones , Ratones Noqueados , Contracción Muscular , Condicionamiento Físico Animal , Ribonucleótidos
9.
J Physiol ; 598(2): 303-315, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31696935

RESUMEN

KEY POINTS: Increased insulin action is an important component of the health benefits of exercise, but its regulation is complex and not fully elucidated. Previous studies of insulin-stimulated GLUT4 translocation to the skeletal muscle membrane found insufficient increases to explain the increases in glucose uptake. By determination of leg glucose uptake and interstitial muscle glucose concentration, insulin-induced muscle membrane permeability to glucose was calculated 4 h after one-legged knee-extensor exercise during a submaximal euglycaemic-hyperinsulinaemic clamp. It was found that during submaximal insulin stimulation, muscle membrane permeability to glucose in humans increases twice as much in previously exercised vs. rested muscle and outstrips the supply of glucose, which then becomes limiting for glucose uptake. This methodology can now be employed to determine muscle membrane permeability to glucose in people with diabetes, who have reduced insulin action, and in principle can also be used to determine membrane permeability to other substrates or metabolites. ABSTRACT: Increased insulin action is an important component of the health benefits of exercise, but the regulation of insulin action in vivo is complex and not fully elucidated. Previously determined increases in skeletal muscle insulin-stimulated GLUT4 translocation are inconsistent and mostly cannot explain the increases in insulin action in humans. Here we used leg glucose uptake (LGU) and interstitial muscle glucose concentration to calculate insulin-induced muscle membrane permeability to glucose, a variable not previously possible to quantify in humans. Muscle membrane permeability to glucose, measured 4 h after one-legged knee-extensor exercise, increased ∼17-fold during a submaximal euglycaemic-hyperinsulinaemic clamp in rested muscle (R) and ∼36-fold in exercised muscle (EX). Femoral arterial infusion of NG -monomethyl l-arginine acetate or ATP decreased and increased, respectively, leg blood flow (LBF) in both legs but did not affect membrane glucose permeability. Decreasing LBF reduced interstitial glucose concentrations to ∼2 mM in the exercised but only to ∼3.5 mM in non-exercised muscle and abrogated the augmented effect of insulin on LGU in the EX leg. Increasing LBF by ATP infusion increased LGU in both legs with uptake higher in the EX leg. We conclude that it is possible to measure functional muscle membrane permeability to glucose in humans and it increases twice as much in exercised vs. rested muscle during submaximal insulin stimulation. We also show that muscle perfusion is an important regulator of muscle glucose uptake when membrane permeability to glucose is high and we show that the capillary wall can be a significant barrier for glucose transport.


Asunto(s)
Permeabilidad de la Membrana Celular , Ejercicio Físico , Glucosa/metabolismo , Insulina/farmacología , Músculo Esquelético/metabolismo , Técnica de Clampeo de la Glucosa , Humanos , Pierna
10.
Am J Physiol Heart Circ Physiol ; 318(2): H301-H325, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31886718

RESUMEN

The introduction of duplex Doppler ultrasound almost half a century ago signified a revolutionary advance in the ability to assess limb blood flow in humans. It is now widely used to assess blood flow under a variety of experimental conditions to study skeletal muscle resistance vessel function. Despite its pervasive adoption, there is substantial variability between studies in relation to experimental protocols, procedures for data analysis, and interpretation of findings. This guideline results from a collegial discussion among physiologists and pharmacologists, with the goal of providing general as well as specific recommendations regarding the conduct of human studies involving Doppler ultrasound-based measures of resistance vessel function in skeletal muscle. Indeed, the focus is on methods used to assess resistance vessel function and not upstream conduit artery function (i.e., macrovasculature), which has been expertly reviewed elsewhere. In particular, we address topics related to experimental design, data collection, and signal processing as well as review common procedures used to assess resistance vessel function, including postocclusive reactive hyperemia, passive limb movement, acute single limb exercise, and pharmacological interventions.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/diagnóstico por imagen , Ultrasonografía Doppler/normas , Resistencia Vascular/fisiología , Humanos , Músculo Esquelético/efectos de los fármacos , Proyectos de Investigación , Resistencia Vascular/efectos de los fármacos
11.
Microcirculation ; 27(2): e12593, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31605649

RESUMEN

OBJECTIVE: The effect of insulin on blood flow distribution within muscle microvasculature has been suggested to be important for glucose metabolism. However, the "capillary recruitment" hypothesis is still controversial and relies on studies using indirect contrast-enhanced ultrasound (CEU) methods. METHODS: We studied how hyperinsulinemia effects capillary blood flow in rat extensor digitorum longus (EDL) muscle during euglycemic hyperinsulinemic clamp using intravital video microscopy (IVVM). Additionally, we modeled blood flow and microbubble distribution within the vascular tree under conditions observed during euglycemic hyperinsulinemic clamp experiments. RESULTS: Euglycemic hyperinsulinemia caused an increase in erythrocyte (80 ± 25%, P < .01) and plasma (53 ± 12%, P < .01) flow in rat EDL microvasculature. We found no evidence of de novo capillary recruitment within, or among, capillary networks supplied by different terminal arterioles; however, erythrocyte flow became slightly more homogenous. Our computational model predicts that a decrease in asymmetry at arteriolar bifurcations causes redistribution of microbubble flow among capillaries already perfused with erythrocytes and plasma, resulting in 25% more microbubbles flowing through capillaries. CONCLUSIONS: Our model suggests increase in CEU signal during hyperinsulinemia reflects a redistribution of arteriolar flow and not de novo capillary recruitment. IVVM experiments support this prediction showing increases in erythrocyte and plasma flow and not capillary recruitment.


Asunto(s)
Capilares , Hiperinsulinismo , Microcirculación , Músculo Esquelético , Animales , Capilares/metabolismo , Capilares/fisiopatología , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatología , Masculino , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiopatología , Ratas , Ratas Sprague-Dawley
12.
Eur Respir J ; 56(1)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32350100

RESUMEN

OBJECTIVE: To evaluate the effect of aerobic exercise training on asthma control, lung function and airway inflammation in adults with asthma. DESIGN: Systematic review and meta-analysis. METHODS: Randomised controlled trials investigating the effect of ≥8 weeks of aerobic exercise training on outcomes for asthma control, lung function and airway inflammation in adults with asthma were eligible for study. MEDLINE, Embase, CINAHL, PEDro and the Cochrane Central Register of Controlled Trials (CENTRAL) were searched up to April 3, 2019. Risk of bias was assessed using the Cochrane Risk of Bias Tool. RESULTS: We included 11 studies with a total of 543 adults with asthma. Participants' mean (range) age was 36.5 (22-54) years; 74.8% of participants were female and the mean (range) body mass index was 27.6 (23.2-38.1) kg·m-2. Interventions had a median (range) duration of 12 (8-12) weeks and included walking, jogging, spinning, treadmill running and other unspecified exercise training programmes. Exercise training improved asthma control with a standard mean difference (SMD) of -0.48 (-0.81--0.16). Lung function slightly increased with an SMD of -0.36 (-0.72-0.00) in favour of exercise training. Exercise training had no apparent effect on markers of airway inflammation (SMD -0.03 (-0.41-0.36)). CONCLUSIONS: In adults with asthma, aerobic exercise training has potential to improve asthma control and lung function, but not airway inflammation.


Asunto(s)
Asma , Ejercicio Físico , Adulto , Asma/terapia , Índice de Masa Corporal , Terapia por Ejercicio , Femenino , Humanos , Masculino , Persona de Mediana Edad , Caminata
13.
FASEB J ; 33(9): 10369-10382, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31211922

RESUMEN

Traumatic strain injury in skeletal muscle is often associated with fluid accumulation at the site of rupture, but the role of this injury exudate (EX) in cellular responses and healing is unknown. We aimed to characterize the EX sampled from human hamstring or calf muscles following a strain injury (n = 12). The cytokine and growth-factor profile, gene expression, and transcriptome analysis of EX-derived cells were compared with blood taken simultaneously from the same individuals. Cellular responses to the EX were tested in 3-dimensional (3D) culture based on primary human fibroblasts and myoblasts isolated from hamstring muscles. The EX contained a highly proinflammatory profile with a substantial expression of angiogenic factors. The proinflammatory profile was present in samples taken early postinjury and in samples aspirated several weeks postinjury, suggesting persistent inflammation. Cells derived from the EX demonstrated an increased expression of fibrogenic, adipogenic, and angiogenesis-related genes in comparison with blood cells. The injury EX stimulated fibroblast proliferation 2-fold compared with plasma, whereas such an effect was not seen for myoblasts. Finally, in 3D cell culture, the EX induced an up-regulation of connective tissue-related genes. In summary, EX formation following a muscle-strain injury stimulates fibroblast proliferation and the synthesis of connective tissue in fibroblasts. This suggests that the EX promotes an acute tissue-healing response but potentially also contributes to the formation of fibrotic tissue in the later phases of tissue repair.-Bayer, M. L., Bang, L., Hoegberget-Kalisz, M., Svensson, R. B., Olesen, J. L., Karlsson, M. M., Schjerling, P., Hellsten, Y., Hoier, B., Magnusson, S. P., Kjaer, M. Muscle-strain injury exudate favors acute tissue healing and prolonged connective tissue formation in humans.


Asunto(s)
Tejido Conectivo/fisiología , Exudados y Transudados/citología , Fibroblastos/citología , Músculo Esquelético/fisiología , Enfermedades Musculares/prevención & control , Mioblastos/citología , Cicatrización de Heridas , Adolescente , Adulto , Biomarcadores/análisis , Proliferación Celular , Femenino , Fibroblastos/fisiología , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/lesiones , Enfermedades Musculares/patología , Mioblastos/fisiología , Adulto Joven
14.
Scand J Med Sci Sports ; 30(7): 1117-1131, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32246511

RESUMEN

Angiogenic, mitochondrial, and related transcriptional proteins were assessed in human skeletal muscle and isolated vascular cells during the early phase of endurance training. Thigh muscle biopsies were obtained in healthy young subjects, after one acute bout (n = 9) and after 3, 5, 7, and 14 days (n = 9) of cycle ergometer training. Whole muscle homogenates were analyzed for angiogenic, mitochondrial, and regulatory mRNA and protein levels. Angiogenic proteins were determined in muscle-derived endothelial cells and pericytes sorted by fluorescence-activated cell sorting. Acute exercise induced an increase in whole muscle mRNA of peroxisome proliferator-activated receptor gamma coactivator 1α (4.5-fold; P = .002) and vascular endothelial growth factor (VEGF) (2.4-fold; P = .001) at 2 hours post. After 14 days of training, there was an increase in CD31 protein (63%; P = .010) in whole muscle indicating capillary growth. There was also an increase in muscle VEGF receptor 2 (VEGFR2) (1.5-fold; P = .013), in OXPHOS proteins (complex I, II, IV, V; 1.4- to 1.9-fold; P < .05) after 14 days of training and an increase in estrogen-related receptorα protein (1.5-fold; P = .039) at 14 days compared to 5 days of training. Both endothelial cells and pericytes expressed VEGF and other angiogenic factors at the protein level but with a distinctively lower expression of VEGFR2 and thrombospondin-1 (TSP-1) in pericytes. The findings illustrate that initiation of capillary and mitochondrial adaptations occurs within 14 days of training and suggest that sustained changes in angiogenic proteins including VEGF and TSP-1 are moderate in whole muscle and vascular cells.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Entrenamiento Aeróbico , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Neovascularización Fisiológica , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Adulto Joven
15.
Eur J Appl Physiol ; 120(3): 603-612, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31932877

RESUMEN

PURPOSE: Remote ischaemic preconditioning (RIPC) refers to the protection conferred to tissues and organs via brief periods of ischaemia in a remote vascular territory, including the brain. Recent studies in humans report that RIPC provides neuroprotection against recurrent (ischaemic) stroke. To better understand the ability of RIPC to improve brain health, the present study explored the potential for RIPC to acutely improve cerebrovascular function. METHODS: Eleven young healthy (females n = 6, age; 28.1 ± 3.7 years) and 9 older individuals (females n = 4, age 52.5 ± 6.7 years) at increased risk for stroke (cardiovascular disease risk factors) underwent assessments of cerebrovascular function, assessed by carbon dioxide (CO2) reactivity and cerebral autoregulation during normo- and hypercapnia (5% CO2) following 40 mins of bilateral arm RIPC or a sham condition. Squat-to-stand manoeuvres were performed to induce changes in blood pressure to assess cerebral autoregulation (0.10 Hz) and analysed via transfer function. RESULTS: We found no change in middle cerebral artery velocity or blood pressure across 40 mins of RIPC. Application of RIPC resulted in no change in CO2 reactivity slopes (sham vs RIPC, 1.97 ± 0.88 vs 2.06 ± 0.69 cm/s/mmHg P = 0.61) or parameters of cerebral autoregulation during normocapnia (sham vs RIPC, normalised gain%, 1.27 ± 0.25 vs 1.22 ± 0.35, P = 0.46). CONCLUSION: This study demonstrates that a single bout of RIPC does not influence cerebrovascular function acutely in healthy individuals, or those at increased cardiovascular risk. Given the previously reported protective role of RIPC on stroke recurrence in humans, it is possible that repeated bouts of RIPC may be necessary to impart beneficial effects on cerebrovascular function.


Asunto(s)
Circulación Cerebrovascular , Precondicionamiento Isquémico , Adulto , Velocidad del Flujo Sanguíneo , Femenino , Homeostasis , Humanos , Hipercapnia , Masculino , Persona de Mediana Edad , Adulto Joven
16.
J Wound Care ; 29(11): 658-663, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33175625

RESUMEN

OBJECTIVE: The frequent change in clinicians, and the emerging use of photographic documentation in wound management, could require a more diverse treatment of patients due to poor interobserver agreement. The aim of this study was to assess the interobserver agreement of a commonly used classification system for diabetic foot ulcers (DFUs), the Meggitt-Wagner classification, and to compare the agreement on classification with the agreement in treatment recommendations. METHOD: An interobserver study was conducted based on a questionnaire linked to 30 photographs of DFUs. Different groups of observers were tested to investigate whether there was a difference between professions or level of education: experienced orthopaedic wound care doctors (n=7); nurses specialised in wound care (n=8) and untrained nurses assigned to a diabetic wound care training course (n=23). Krippendorff's alpha was used to calculate interobserver agreement, and an agreement of >0.67 was defined as substantial. RESULTS: The Krippendorff's alpha value for interobserver agreement on the Meggitt-Wagner classification was 0.52 for the doctors group, 0.67 for the specialised nurses and 0.61 for the untrained nurses. The corresponding values regarding agreement on recommendation of surgical revision of the wound were 0.35, 0.22 and 0.15, respectively. The choice of dressing type or antibiotic treatment had even lower interobserver agreement. CONCLUSIONS: The interobserver agreement on the Meggitt-Wagner classification was substantial in the specialised nurse group, but the evaluation and treatment of DFUs should not be exclusively based on pictorial materials.


Asunto(s)
Diabetes Mellitus , Pie Diabético/clasificación , Vendajes , Pie Diabético/terapia , Humanos , Variaciones Dependientes del Observador , Fotograbar
17.
Diabetologia ; 62(3): 485-493, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30607464

RESUMEN

AIMS/HYPOTHESIS: Plasma ATP is a potent vasodilator and is thought to play a role in the local regulation of blood flow. Type 2 diabetes is associated with reduced tissue perfusion. We aimed to examine whether individuals with type 2 diabetes have reduced plasma ATP concentrations compared with healthy control participants (case-control design). METHODS: We measured femoral arterial and venous plasma ATP levels with the intravascular microdialysis technique during normoxia, hypoxia and one-legged knee-extensor exercise (10 W and 30 W) in nine participants with type 2 diabetes and eight control participants. In addition, we infused acetylcholine (ACh), sodium nitroprusside (SNP) and ATP into the femoral artery to assess vascular function and ATP signalling. RESULTS: Individuals with type 2 diabetes had a lower leg blood flow (LBF; 2.9 ± 0.1 l/min) compared with the control participants (3.2 ± 0.1 l/min) during exercise (p < 0.05), in parallel with lower venous plasma ATP concentration (205 ± 35 vs 431 ± 72 nmol/l; p < 0.05). During systemic hypoxia, LBF increased from 0.35 ± 0.04 to 0.54 ± 0.06 l/min in control individuals, whereas it did not increase (0.25 ± 0.04 vs 0.31 ± 0.03 l/min) in the those with type 2 diabetes and was lower than in the control individuals (p < 0.05). Hypoxia increased venous plasma ATP levels in both groups (p < 0.05), but the increase was higher in control individuals (90 ± 26 nmol/l) compared to those with type 2 diabetes (18 ± 5 nmol/l). LBF and vascular conductance were lower during ATP (0.15 and 0.4 µmol min-1 [kg leg mass]-1) and ACh (100 µg min-1 [kg leg mass]-1) infusion in individuals with type 2 diabetes compared with the control participants (p < 0.05), whereas there was no difference during SNP infusion. CONCLUSIONS/INTERPRETATION: These findings demonstrate that individuals with type 2 diabetes have lower plasma ATP concentrations during exercise and hypoxia compared with control individuals, and this occurs in parallel with lower blood flow. Moreover, individuals with type 2 diabetes have a reduced vasodilatory response to infused ATP. These impairments in the ATP system are both likely to contribute to the reduced tissue perfusion associated with type 2 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT02001766.


Asunto(s)
Adenosina Trifosfato/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Ejercicio Físico/fisiología , Hipoxia/fisiopatología , Músculo Esquelético/fisiopatología , Adulto , Velocidad del Flujo Sanguíneo/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Humanos , Hipoxia/metabolismo , Masculino , Persona de Mediana Edad , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Flujo Sanguíneo Regional/fisiología , Vasodilatación/fisiología
18.
Scand J Med Sci Sports ; 29(3): 360-368, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30480353

RESUMEN

Type 2 diabetes is associated with microvascular dysfunction, but little is known about how capillary ultrastructure is affected by exercise training. To investigate the effect of two types of exercise training on skeletal muscle capillary ultrastructure and capillarization in individuals with type 2 diabetes, 21 individuals with type 2 diabetes were allocated (randomized controlled trial) to 11 weeks of aerobic exercise training consisting of either moderate-intensity endurance training (END; n = 10) or low-volume high-intensity interval training (HIIT; n = 11). Skeletal muscle biopsies (m vastus lateralis) were obtained before and after the training intervention. At baseline, there was no difference in capillarization, capillary structure, and exercise hyperemia between the two groups. After the training intervention, capillary-to-fiber ratio increased by 8% ± 3% in the END group (P < 0.05) and was unchanged in the HIIT group with no difference between groups. Endothelium thickness increased (P < 0.05), basement membrane thickness decreased (P < 0.05), and the capillary lumen tended (P = 0.07) to increase in the END group, whereas these structural indicators were unchanged after HIIT. In contrast, skeletal muscle endothelial nitric oxide synthase (eNOS) increased after HIIT (P < 0.05), but not END, whereas there was no change in vascular endothelial growth factor (VEGF), superoxide dismutase (SOD)-2, or NADPH oxidase after both training protocols. In contrast to END training, HIIT did not alter capillarization or capillary structure in individuals with type 2 diabetes. In conclusion, HIIT appears to be a less effective strategy to treat capillary rarefaction and reduce basement thickening in type 2 diabetes.


Asunto(s)
Capilares/ultraestructura , Diabetes Mellitus Tipo 2/terapia , Ejercicio Físico , Músculo Esquelético/irrigación sanguínea , Anciano , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Masculino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III/metabolismo , Flujo Sanguíneo Regional , Superóxido Dismutasa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Br J Sports Med ; 53(14): 856-858, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30792257

RESUMEN

From 19th to 22nd November 2018, 26 researchers representing nine countries and a variety of academic disciplines met in Snekkersten, Denmark, to reach evidence-based consensus about physical activity and older adults. It was recognised that the term 'older adults' represents a highly heterogeneous population. It encompasses those that remain highly active and healthy throughout the life-course with a high intrinsic capacity to the very old and frail with low intrinsic capacity. The consensus is drawn from a wide range of research methodologies within epidemiology, medicine, physiology, neuroscience, psychology and sociology, recognising the strength and limitations of each of the methods. Much of the evidence presented in the statements is based on longitudinal associations from observational and randomised controlled intervention studies, as well as quantitative and qualitative social studies in relatively healthy community-dwelling older adults. Nevertheless, we also considered research with frail older adults and those with age-associated neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, and in a few cases molecular and cellular outcome measures from animal studies. The consensus statements distinguish between physical activity and exercise. Physical activity is used as an umbrella term that includes both structured and unstructured forms of leisure, transport, domestic and work-related activities. Physical activity entails body movement that increases energy expenditure relative to rest, and is often characterised in terms of intensity from light, to moderate to vigorous. Exercise is defined as a subset of structured physical activities that are more specifically designed to improve cardiorespiratory fitness, cognitive function, flexibility balance, strength and/or power. This statement presents the consensus on the effects of physical activity on older adults' fitness, health, cognitive functioning, functional capacity, engagement, motivation, psychological well-being and social inclusion. It also covers the consensus on physical activity implementation strategies. While it is recognised that adverse events can occur during exercise, the risk can be minimised by carefully choosing the type of activity undertaken and by consultation with the individual's physician when warranted, for example, when the individual is frail, has a number of co-morbidities, or has exercise-related symptoms, such as chest pain, heart arrhythmia or dizziness. The consensus was obtained through an iterative process that began with the presentation of the state-of-the-science in each domain, followed by group and plenary discussions. Ultimately, the participants reached agreement on the 30-item consensus statements.


Asunto(s)
Cognición/fisiología , Ejercicio Físico/fisiología , Envejecimiento Saludable/fisiología , Aptitud Física/fisiología , Adulto , Anciano , Dinamarca , Práctica Clínica Basada en la Evidencia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Conducta Sedentaria
20.
Am J Physiol Endocrinol Metab ; 314(1): E1-E20, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28874356

RESUMEN

PGC-1α has been suggested to regulate exercise training-induced metabolic adaptations and autophagy in skeletal muscle. The factors regulating PGC-1α, however, have not been fully resolved. The aim was to investigate the impact of ß-adrenergic signaling in PGC-1α-mediated metabolic adaptations in skeletal muscle with exercise training. Muscle was obtained from muscle-specific PGC-1α knockout (MKO) and lox/lox mice 1) 3 h after a single exercise bout with or without prior injection of propranolol or 3 h after a single injection of clenbuterol and 2) after 5 wk of wheel running exercise training with or without propranolol treatment or after 5 wk of clenbuterol treatment. A single clenbuterol injection and an acute exercise bout similarly increased the mRNA content of both N-terminal and full-length PGC-1α isoforms, and prior propranolol treatment reduced the exercise-induced increase in mRNA of all isoforms. Furthermore, a single clenbuterol injection elicited a PGC-1α-dependent increase in cytochrome c and vascular endothelial growth factor mRNA, whereas prolonged clenbuterol treatment increased fiber size but reduced capillary density. Exercise training increased the protein content of OXPHOS, LC3I, and Parkin in a PGC-1α-dependent manner without effect of propranolol, while an exercise training-induced increase in Akt2 and p62 protein required PGC-1α and was blunted by prolonged propranolol treatment. This suggests that ß-adrenergic signaling is not required for PGC-1α-mediated exercise training-induced adaptations in mitochondrial proteins, but contributes to exercise training-mediated adaptations in insulin signaling and autophagy regulation through PGC-1α. Furthermore, changes observed with acute stimulation of compounds like clenbuterol and propranolol may not lead to corresponding adaptations with prolonged treatment.


Asunto(s)
Adaptación Fisiológica , Agonistas Adrenérgicos beta/farmacología , Músculo Esquelético/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Animales , Autofagia/efectos de los fármacos , Autofagia/fisiología , Clenbuterol/farmacología , Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Mitocondriales/metabolismo , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Músculo Esquelético/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Condicionamiento Físico Animal/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA