Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 43(3): 1392-406, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25586221

RESUMEN

Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host-pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast.


Asunto(s)
Candida glabrata/genética , Genes Fúngicos , Análisis de Secuencia de ARN/métodos , Transcriptoma , Regiones no Traducidas 3' , Concentración de Iones de Hidrógeno , Intrones , Nitrosación , Seudogenes , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharomyces cerevisiae/genética
2.
PLoS Biol ; 9(6): e1001082, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21695110

RESUMEN

Centromeres are differentiated chromatin domains, present once per chromosome, that direct segregation of the genome in mitosis and meiosis by specifying assembly of the kinetochore. They are distinct genetic loci in that their identity in most organisms is determined not by the DNA sequences they are associated with, but through specific chromatin composition and context. The core nucleosomal protein CENP-A/cenH3 plays a primary role in centromere determination in all species and directs assembly of a large complex of associated proteins in vertebrates. While CENP-A itself is stably transmitted from one generation to the next, the nature of the template for centromere replication and its relationship to kinetochore function are as yet poorly understood. Here, we investigate the assembly and inheritance of a histone fold complex of the centromere, the CENP-T/W complex, which is integrated with centromeric chromatin in association with canonical histone H3 nucleosomes. We have investigated the cell cycle regulation, timing of assembly, generational persistence, and requirement for function of CENPs -T and -W in the cell cycle in human cells. The CENP-T/W complex assembles through a dynamic exchange mechanism in late S-phase and G2, is required for mitosis in each cell cycle and does not persist across cell generations, properties reciprocal to those measured for CENP-A. We propose that the CENP-A and H3-CENP-T/W nucleosome components of the centromere are specialized for centromeric and kinetochore activities, respectively. Segregation of the assembly mechanisms for the two allows the cell to switch between chromatin configurations that reciprocally support the replication of the centromere and its conversion to a mitotic state on postreplicative chromatin.


Asunto(s)
Centrómero/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Mitosis , Ciclo Celular , Fase G1 , Células HeLa , Humanos , Fase S , Huso Acromático
3.
J Cell Sci ; 124(Pt 22): 3871-83, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22100916

RESUMEN

Accurate chromosome segregation requires the assembly of kinetochores, multiprotein complexes that assemble on the centromere of each sister chromatid. A key step in this process involves binding of the constitutive centromere-associated network (CCAN) to CENP-A, the histone H3 variant that constitutes centromeric nucleosomes. This network is proposed to operate as a persistent structural scaffold for assembly of the outer kinetochore during mitosis. Here, we show by fluorescence resonance energy transfer (FRET) that the N-terminus of CENP-N lies in close proximity to the N-terminus of CENP-A in vivo, consistent with in vitro data showing direct binding of CENP-N to CENP-A. Furthermore, we demonstrate in living cells that CENP-N is bound to kinetochores during S phase and G2, but is largely absent from kinetochores during mitosis and G1. By measuring the dynamics of kinetochore binding, we reveal that CENP-N undergoes rapid exchange in G1 until the middle of S phase when it becomes stably associated with kinetochores. The majority of CENP-N is loaded during S phase and dissociates again during G2. We propose a model in which CENP-N functions as a fidelity factor during centromeric replication and reveal that the CCAN network is considerably more dynamic than previously appreciated.


Asunto(s)
Ciclo Celular , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Línea Celular , Centrómero/genética , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Replicación del ADN , Humanos , Unión Proteica
4.
mBio ; 11(2)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345638

RESUMEN

The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1 In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1 In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies.IMPORTANCECandida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans.


Asunto(s)
Candida albicans/genética , Proteínas Represoras/genética , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Hifa/crecimiento & desarrollo , Estadios del Ciclo de Vida/genética , Virulencia/genética
5.
mBio ; 8(1)2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28143980

RESUMEN

Adaptation to alternating CO2 concentrations is crucial for all organisms. Carbonic anhydrases-metalloenzymes that have been found in all domains of life-enable fixation of scarce CO2 by accelerating its conversion to bicarbonate and ensure maintenance of cellular metabolism. In fungi and other eukaryotes, the carbonic anhydrase Nce103 has been shown to be essential for growth in air (~0.04% CO2). Expression of NCE103 is regulated in response to CO2 availability. In Saccharomyces cerevisiae, NCE103 is activated by the transcription factor ScCst6, and in Candida albicans and Candida glabrata, it is activated by its homologues CaRca1 and CgRca1, respectively. To identify the kinase controlling Cst6/Rca1, we screened an S. cerevisiae kinase/phosphatase mutant library for the ability to regulate NCE103 in a CO2-dependent manner. We identified ScSch9 as a potential ScCst6-specific kinase, as the sch9Δ mutant strain showed deregulated NCE103 expression on the RNA and protein levels. Immunoprecipitation revealed the binding capabilities of both proteins, and detection of ScCst6 phosphorylation by ScSch9 in vitro confirmed Sch9 as the Cst6 kinase. We could show that CO2-dependent activation of Sch9, which is part of a kinase cascade, is mediated by lipid/Pkh1/2 signaling but not TORC1. Finally, we tested conservation of the identified regulatory cascade in the pathogenic yeast species C. albicans and C. glabrata Deletion of SCH9 homologues of both species impaired CO2-dependent regulation of NCE103 expression, which indicates a conservation of the CO2 adaptation mechanism among yeasts. Thus, Sch9 is a Cst6/Rca1 kinase that links CO2 adaptation to lipid signaling via Pkh1/2 in fungi. IMPORTANCE: All living organisms have to cope with alternating CO2 concentrations as CO2 levels range from very low in the atmosphere (0.04%) to high (5% and more) in other niches, including the human body. In fungi, CO2 is sensed via two pathways. The first regulates virulence in pathogenic yeast by direct activation of adenylyl cyclase. The second pathway, although playing a fundamental role in fungal metabolism, is much less understood. Here the transcription factor Cst6/Rca1 controls carbon homeostasis by regulating carbonic anhydrase expression. Upstream signaling in this pathway remains elusive. We identify Sch9 as the kinase controlling Cst6/Rca1 activity in yeast and demonstrate that this pathway is conserved in pathogenic yeast species, which highlights identified key players as potential pharmacological targets. Furthermore, we provide a direct link between adaptation to changing CO2 conditions and lipid/Pkh1/2 signaling in yeast, thus establishing a new signaling cascade central to metabolic adaptation.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Dióxido de Carbono/metabolismo , Metabolismo de los Lípidos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Transducción de Señal , Factores de Transcripción Activadores/metabolismo , Adenosina Trifosfatasas/metabolismo , Candida albicans/genética , Candida glabrata/genética , Anhidrasas Carbónicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Metaloendopeptidasas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Front Microbiol ; 7: 750, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242763

RESUMEN

As part of the innate immune system, natural killer (NK) cells are directly involved in the response to fungal infections. Perforin has been identified as the major effector molecule acting against many fungal pathogens. While several studies have shown that perforin mediated fungicidal effects can contribute to fungal clearance, neither the activation of NK cells by fungal pathogens nor the effects of perforin on fungal cells are well-understood. In a dual approach, we have studied the global gene expression pattern of primary and cytokine activated NK cells after co-incubation with Candida albicans and the transcriptomic adaptation of C. albicans to perforin exposure. NK cells responded to the fungal pathogen with an up-regulation of genes involved in immune signaling and release of cytokines. Furthermore, we observed a pronounced increase of genes involved in glycolysis and glycolysis inhibitor 2-deoxy-D-glucose impaired C. albicans induced NK cell activation. This strongly indicates that metabolic adaptation is a major part of the NK cell response to C. albicans infections. In the fungal pathogen, perforin induced a strong up-regulation of several fungal genes involved in the zinc depletion response, such as PRA1 and ZRT1. These data suggest that fungal zinc homeostasis is linked to the reaction to perforin secreted by NK cells. However, deletion mutants in PRA1 and ZRT1 did not show altered susceptibility to perforin.

7.
PLoS One ; 7(9): e44717, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028590

RESUMEN

Kinetochores are multi-protein megadalton assemblies that are required for attachment of microtubules to centromeres and, in turn, the segregation of chromosomes in mitosis. Kinetochore assembly is a cell cycle regulated multi-step process. The initial step occurs during interphase and involves loading of the 15-subunit constitutive centromere associated complex (CCAN), which contains a 5-subunit (CENP-P/O/R/Q/U) sub-complex. Here we show using a fluorescent three-hybrid (F3H) assay and fluorescence resonance energy transfer (FRET) in living mammalian cells that CENP-P/O/R/Q/U subunits exist in a tightly packed arrangement that involves multifold protein-protein interactions. This sub-complex is, however, not pre-assembled in the cytoplasm, but rather assembled on kinetochores through the step-wise recruitment of CENP-O/P heterodimers and the CENP-P, -O, -R, -Q and -U single protein units. SNAP-tag experiments and immuno-staining indicate that these loading events occur during S-phase in a manner similar to the nucleosome binding components of the CCAN, CENP-T/W/N. Furthermore, CENP-P/O/R/Q/U binding to the CCAN is largely mediated through interactions with the CENP-N binding protein CENP-L as well as CENP-K. Once assembled, CENP-P/O/R/Q/U exchanges slowly with the free nucleoplasmic pool indicating a low off-rate for individual CENP-P/O/R/Q/U subunits. Surprisingly, we then find that during late S-phase, following the kinetochore-binding step, both CENP-Q and -U but not -R undergo oligomerization. We propose that CENP-P/O/R/Q/U self-assembles on kinetochores with varying stoichiometry and undergoes a pre-mitotic maturation step that could be important for kinetochores switching into the correct conformation necessary for microtubule-attachment.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Western Blotting , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Histonas , Humanos , Proteínas Nucleares/genética
8.
J Biophotonics ; 1(3): 245-54, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19412974

RESUMEN

At the centromere, a network of proteins, the kinetochore, assembles in order to grant correct chromatin segregation. In this study the dynamics and molecular interactions of the inner kinetochore protein CENP-T were analyzed employing a variety of fluorescence microscopy techniques in living human cells. Acceptor-bleaching FRET indicates that CENP-T directly associates with CENP-A and CENP-B. CENP-T exchange into centromeres is restricted to the S-phase of the cell cycle as revealed by FRAP, suggesting a coreplicational loading mechanism, as we have recently also demonstrated for CENP-I. These properties make CENP-T one of the basic inner kinetochore proteins with most further proteins binding downstream, suggesting a fundamental role of CENP-T in kinetochore function.


Asunto(s)
Autoantígenos/metabolismo , Proteína B del Centrómero/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Secuencia de Bases , Ciclo Celular , Centrómero/ultraestructura , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Cartilla de ADN/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microscopía Fluorescente , Fenómenos Ópticos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Fluorescencia
9.
Yeast ; 24(6): 511-22, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17431925

RESUMEN

PCR-based techniques for directed gene alterations have become standard tools in Candida albicans. To help to increase the speed of functional analysis of Candida albicans genes, we previously constructed and updated a modular set of pFA-plasmid vectors for PCR-based gene targeting in C. albicans. Here we report the functional analyses of C. albicans ORFs whose homologues in S. cerevisiae are involved in endocytosis, to explore their potential involvement in polarized cell growth. Three C. albicans genes, ABP1, BZZ1 and EDE1, were found to be non-essential. Yeast and hyphal morphogenesis were not affected by the individual deletions and the mutant strains appeared wild-type-like under the different growth conditions tested. On the other hand, deletion of both alleles of the C. albicans PAN1 homologue was not feasible. Promoter shut-down experiments using a MET3p-PAN1/pan1 strain indicated severe growth defects and abolished endocytosis, indicating that PAN1 is an essential gene. Subcellular distribution of CaAbp1 and CaPan1 was analysed via GFP-tagged proteins. Both proteins were found to localize at the cortex and at hyphal tips in a patch-like manner, supporting their role in endocytosis. Localization patterns of Abp1 and Pan1, however, were distinct from that of the FM4-64 stained Spitzenkörper.


Asunto(s)
Candida albicans/fisiología , Endocitosis , Proteínas Fúngicas , Proteínas de Microfilamentos , Proteínas de Saccharomyces cerevisiae , Actinas/metabolismo , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Medios de Cultivo , Citoesqueleto/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutación , Sistemas de Lectura Abierta/genética , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Basic Microbiol ; 46(6): 513-23, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17139615

RESUMEN

Virulence of C. albicans strains can be tested using a mouse model of haematogenously disseminated Candida cells. Initial steps of host-pathogen contact such as adhesion and colonization are not taken into account due to the injection of Candida cells into the blood stream. Here we describe an assay, based on the ex vivo usage of porcine intestinal epithelium (PIE), that is useful to monitor the early stages of a C. albicans infection. The ability of C. albicans to undergo morphogenetic switching between yeast and hyphal stages is thought to contribute to its virulence. We found that hyphal formation was required to allow cells to colonize the PIE. The non-filamentous mutant strains efg1/cph1 which lacks two of the central transcription factors that are required to promote hyphal growth and wal1 that carries a deletion of the C. albicans homolog of the human Wiskott-Aldrich Syndrome Protein and is deficient in endocytosis showed only weak adherence. Furthermore, the wal1 mutant was found to be reduced in virulence using the mouse tail vein injection assay. We also analyzed the colonization properties of a variety of other mutant strains carrying deletions of either secreted aspartyl proteinase (SAP)-family genes or amino acid permease encoding genes (GAP1, SSY1, and PUT4). Interestingly, the nag5 strain which lacks an N-acetylglucosamine kinase showed enhanced filamentation and invasive growth as well as increased resistance against farnesol.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Candidiasis/microbiología , Adhesión Celular/fisiología , Mucosa Intestinal/microbiología , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/fisiología , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/fisiología , Candida albicans/genética , Candida albicans/ultraestructura , ADN de Hongos/química , ADN de Hongos/genética , Farnesol/farmacología , Femenino , Técnicas In Vitro , Mucosa Intestinal/fisiología , Ratones , Microscopía Fluorescente , Mutagénesis Insercional , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Análisis de Supervivencia , Porcinos , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA