Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Epidemics ; 46: 100743, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290265

RESUMEN

Infectious disease modelling has been prominent throughout the COVID-19 pandemic, helping to understand the virus' transmission dynamics and inform response policies. Given their potential importance and translational impact, we evaluated the computational reproducibility of infectious disease modelling articles from the COVID era. We found that four out of 100 randomly sampled studies released between January 2020 and August 2022 could be completely computationally reproduced using the resources provided (e.g., code, data, instructions) whilst a further eight were partially reproducible. For the 100 most highly cited articles from the same period we found that 11 were completely reproducible with a further 22 partially reproducible. Reflecting on our experience, we discuss common issues affecting computational reproducibility and how these might be addressed.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , COVID-19/epidemiología , Pandemias , Reproducibilidad de los Resultados , Enfermedades Transmisibles/epidemiología
2.
Sci Rep ; 13(1): 15319, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714942

RESUMEN

Infectious disease outbreaks often exhibit superspreader dynamics, where most infected people generate no, or few secondary cases, and only a small fraction of individuals are responsible for a large proportion of transmission. Although capturing this heterogeneity is critical for estimating outbreak risk and the effectiveness of group-specific interventions, it is typically neglected in compartmental models of infectious disease transmission-which constitute the most common transmission dynamic modeling framework. In this study we propose different classes of compartmental epidemic models that incorporate transmission heterogeneity, fit them to a number of real outbreak datasets, and benchmark their performance against the canonical superspreader model (i.e., the negative binomial branching process model). We find that properly constructed compartmental models can capably reproduce observed superspreader dynamics and we provide the pathogen-specific parameter settings required to do so. As a consequence, we also show that compartmental models parameterized according to a binary clinical classification have limited support.


Asunto(s)
Epidemias , Modelos Epidemiológicos , Humanos , Brotes de Enfermedades , Benchmarking , Modelos Estadísticos
3.
Infect Dis Model ; 10(1): 99-109, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39364337

RESUMEN

The field of software engineering is advancing at astonishing speed, with packages now available to support many stages of data science pipelines. These packages can support infectious disease modelling to be more robust, efficient and transparent, which has been particularly important during the COVID-19 pandemic. We developed a package for the construction of infectious disease models, integrated it with several open-source libraries and applied this composite pipeline to multiple data sources that provided insights into Australia's 2022 COVID-19 epidemic. We aimed to identify the key processes relevant to COVID-19 transmission dynamics and thereby develop a model that could quantify relevant epidemiological parameters. The pipeline's advantages include markedly increased speed, an expressive application programming interface, the transparency of open-source development, easy access to a broad range of calibration and optimisation tools and consideration of the full workflow from input manipulation through to algorithmic generation of the publication materials. Extending the base model to include mobility effects slightly improved model fit to data, with this approach selected as the model configuration for further epidemiological inference. Under our assumption of widespread immunity against severe outcomes from recent vaccination, incorporating an additional effect of the main vaccination programs rolled out during 2022 on transmission did not further improve model fit. Our simulations suggested that one in every two to six COVID-19 episodes were detected, subsequently emerging Omicron subvariants escaped 30-60% of recently acquired natural immunity and that natural immunity lasted only one to eight months on average. We documented our analyses algorithmically and present our methods in conjunction with interactive online code notebooks and plots. We demonstrate the feasibility of integrating a flexible domain-specific syntax library with state-of-the-art packages in high performance computing, calibration, optimisation and visualisation to create an end-to-end pipeline for infectious disease modelling. We used the resulting platform to demonstrate key epidemiological characteristics of the transition from the emergency to the endemic phase of the COVID-19 pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA