Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ecol Appl ; 34(5): e2978, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38725417

RESUMEN

Rangelands are the dominant land use across a broad swath of central North America where they span a wide gradient, from <350 to >900 mm, in mean annual precipitation. Substantial efforts have examined temporal and spatial variation in aboveground net primary production (ANPP) to precipitation (PPT) across this gradient. In contrast, net secondary productivity (NSP, e.g., primary consumer production) has not been evaluated analogously. However, livestock production, which is a form of NSP or primary consumer production supported by primary production, is the dominant non-cultivated land use and an integral economic driver in these regions. Here, we used long-term (mean length = 19 years) ANPP and NSP data from six research sites across the Central Great Plains with a history of a conservative stocking to determine resource (i.e., PPT)-productivity relationships, NSP sensitivities to dry-year precipitation, and regional trophic efficiencies (e.g., NSP:ANPP ratio). PPT-ANPP relationships were linear for both temporal (site-based) and spatial (among site) gradients. The spatial PPT-NSP model revealed that PPT mediated a saturating relationship for NSP as sites became more mesic, a finding that contrasts with many plant-based PPT-ANPP relationships. A saturating response to high growing-season precipitation suggests biogeochemical rather than vegetation growth constraints may govern NSP (i.e., large herbivore production). Differential sensitivity in NSP to dry years demonstrated that the primary consumer production response heightened as sites became more xeric. Although sensitivity generally decreased with increasing precipitation as predicted from known PPT-ANPP relationships, evidence suggests that the dominant species' identity and traits influenced secondary production efficiency. Non-native northern mixed-grass prairie was outperformed by native Central Great Plains rangeland in sensitivity to dry years and efficiency in converting ANPP to NSP. A more comprehensive understanding of the mechanisms leading to differences in producer and consumer responses will require multisite experiments to assess biotic and abiotic determinants of multi-trophic level efficiency and sensitivity.


Asunto(s)
Ecosistema , Estados Unidos , Animales , Lluvia , Modelos Biológicos , Factores de Tiempo
2.
Glob Chang Biol ; 24(5): 1935-1951, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29265568

RESUMEN

There is considerable uncertainty in the magnitude and direction of changes in precipitation associated with climate change, and ecosystem responses are also uncertain. Multiyear periods of above- and below-average rainfall may foretell consequences of changes in rainfall regime. We compiled long-term aboveground net primary productivity (ANPP) and precipitation (PPT) data for eight North American grasslands, and quantified relationships between ANPP and PPT at each site, and in 1-3 year periods of above- and below-average rainfall for mesic, semiarid cool, and semiarid warm grassland types. Our objective was to improve understanding of ANPP dynamics associated with changing climatic conditions by contrasting PPT-ANPP relationships in above- and below-average PPT years to those that occurred during sequences of multiple above- and below-average years. We found differences in PPT-ANPP relationships in above- and below-average years compared to long-term site averages, and variation in ANPP not explained by PPT totals that likely are attributed to legacy effects. The correlation between ANPP and current- and prior-year conditions changed from year to year throughout multiyear periods, with some legacy effects declining, and new responses emerging. Thus, ANPP in a given year was influenced by sequences of conditions that varied across grassland types and climates. Most importantly, the influence of prior-year ANPP often increased with the length of multiyear periods, whereas the influence of the amount of current-year PPT declined. Although the mechanisms by which a directional change in the frequency of above- and below-average years imposes a persistent change in grassland ANPP require further investigation, our results emphasize the importance of legacy effects on productivity for sequences of above- vs. below-average years, and illustrate the utility of long-term data to examine these patterns.


Asunto(s)
Pradera , Lluvia , Cambio Climático , Poaceae/fisiología
3.
Environ Sci Technol ; 52(6): 3527-3535, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29478313

RESUMEN

Harmful algal blooms are a growing human and environmental health hazard globally. Eco-physiological diversity of the cyanobacteria genera that make up these blooms creates challenges for water managers tasked with controlling the intensity and frequency of blooms, particularly of harmful taxa (e.g., toxin producers, N2 fixers). Compounding these challenges is the ongoing debate over the efficacy of nutrient management strategies (phosphorus-only versus nitrogen and phosphorus), which increases decision-making uncertainty. To improve our understanding of how different cyanobacteria respond to nutrient levels and other biophysical factors, we analyzed a unique 17 year data set comprising monthly observations of cyanobacteria genera and zooplankton abundances, water quality, and flow in a bloom-impacted, subtropical, flow-through lake in Florida (United States). Using the Random Forests machine learning algorithm, an ensemble modeling approach, we characterized and quantified relationships among environmental conditions and five dominant cyanobacteria genera. Results highlighted nonlinear relationships and critical thresholds between cyanobacteria genera and environmental covariates, the potential for hydrology and temperature to limit the efficacy of cyanobacteria bloom management actions, and the importance of a dual nutrient management strategy for reducing bloom risk in the long term.


Asunto(s)
Cianobacterias , Lagos , Eutrofización , Florida , Floraciones de Algas Nocivas , Humanos , Aprendizaje Automático
4.
J Environ Qual ; 47(1): 1-15, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29415112

RESUMEN

Integrated crop-livestock systems hold potential to achieve environmentally sustainable production of crop and livestock products. Although previous studies suggest that integrated crop-livestock systems improve soil health, impacts of integrated crop-livestock systems on water quality and aquatic ecosystems are largely unknown. This review (i) summarizes studies examining surface water quality and soil leachate for management practices commonly used in integrated crop-livestock systems (e.g., no-till, cover crops, livestock grazing) with emphasis on the Northern Great Plains ecoregion of North America, (ii) quantifies management system effects on nutrient and total suspended solids concentrations and loads, and (iii) identifies information gaps regarding water quality associated with integrated crop-livestock systems and research needs in this area. In general, management practices used in integrated crop-livestock systems reduced losses of total suspended solids, nitrogen (N), and phosphorus (P) in surface runoff and soil leachate. However, certain management practices (e.g., no-till or reduced tillage) reduced losses of total N (relative median change = -65%), whereas soluble P losses in runoff increased (57%). Conversely, practices such as grazing increased median total suspended solids (22%), nitrate (45%), total N (85%), and total P (25%) concentrations and loads in surface runoff and aquatic ecosystems. An improved understanding of the interactive effects of integrated crop-livestock management practices on surface water quality and soil leachate under current and future climate scenarios is urgently needed. To close this knowledge gap, future studies should focus on determining concentrations and loads of total suspended solids, N, P, and organic carbon in runoff and soil leachate from integrated crop-livestock systems.


Asunto(s)
Ganado , Calidad del Agua , Agricultura , Animales , Nitrógeno , Fósforo , Suelo
5.
Am J Bot ; 104(6): 915-923, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28626038

RESUMEN

PREMISE OF THE STUDY: Vegetative reproduction from belowground bud banks is the primary driver of grassland systems. Despite the importance of bud banks, the timing of recruitment and the crucial link between formation and maintenance is unknown. METHODS: We assessed patterns of belowground bud development, dormancy, and mortality associated with three perennial native grasses in the northern Great Plains. Temperature and soil moisture were measured below the soil surface to determine relationships with belowground bud development. KEY RESULTS: Blue grama (Bouteloua gracilis) generated more buds over winter that remained dormant; whereas, C3 species needle-and-thread (Hesperostipa comata) and western wheatgrass (Pascopyrum smithii), maintained limited dormant buds throughout winter. Soil temperature was a good predictor for C4 species bud production; whereas, soil moisture was a reliable predictor for C3 buds. Distinct differences existed between C4 species blue grama and C3 species needle-and-thread, whereas C3 species western wheatgrass (Pascopyrum smithii) was intermediate, indicating there is likely a species-specific continuum between the C3 and C4 extremes rather than a stark difference. CONCLUSIONS: The ability to predict belowground bud development is a novel insight to native perennial grasses. Native grass species' strategies and adaptability regarding belowground bud bank size and bud phenology are important factors optimizing tiller recruitment given the variable growing conditions. Patterns of bud dormancy and development will provide insight to the underlying mechanisms by which management practices and fluctuations in precipitation amount and growing season length can alter mixed-grass prairie plant community dynamics.


Asunto(s)
Pradera , Poaceae/crecimiento & desarrollo , América del Norte , Estaciones del Año , Suelo
6.
J Environ Qual ; 45(1): 368-75, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26828193

RESUMEN

Wetland restoration in the Prairie Pothole Region (PPR) often involves soil removal to enhance water storage volume and/or remove seedbanks of invasive species. Consequences of soil removal could include loss of soil organic carbon (SOC), which is important to ecosystem functions such as water-holding capacity and nutrient retention needed for plant re-establishment. We used watershed position and surface flow pathways to classify wetlands into headwater or network systems to address two questions relevant to carbon (C) cycling and wetland restoration practices: (i) Do SOC stocks and C mineralization rates vary with landscape position in the watershed (headwater vs. network systems) and land use (restored vs. native prairie grasslands)? (ii) How might soil removal affect plant emergence? We addressed these questions using wetlands at three large (?200 ha) study areas in the central North Dakota PPR. We found the cumulative amount of C mineralization over 90 d was 100% greater for network than headwater systems, but SOC stocks were similar, suggesting greater C inputs beneath wetlands connected by higher-order drainage lines are balanced by greater rates of C turnover. Land use significantly affected SOC, with greater stocks beneath native prairie than restored grasslands for both watershed positions. Removal of mineral soil negatively affected plant emergence. This watershed-based framework can be applied to guide restoration designs by (i) weighting wetlands based on surface flow connectivity and contributing area and (ii) mapping the effects of soil removal on plant and soil properties for network and headwater wetland systems in the PPR.


Asunto(s)
Carbono/análisis , Suelo/química , Humedales , Ecosistema , Pradera
7.
J Environ Qual ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087265

RESUMEN

The USDA Long-Term Agroecosystem Research (LTAR) network aims to enhance sustainable agricultural management practices through a coordinated, cross-site common experiment involving 18 locations across the United States. The objective of this paper is to provide an overview of the LTAR grazing lands common experiment at the Northern Plains (NP) site, where an experiment was initiated in 2019 to answer producers' and researchers' questions about whether the tactical application of fire or grazing can reduce the dominance of invasive Kentucky bluegrass in northern Great Plains ecosystems. As part of the LTAR common experiment, we contrast a prevailing practice (season-long grazing at moderate stocking rate) with four alternative practices at a half-hectare plot scale: (1) mob grazing by cattle, (2) multi-species grazing (mob grazing by cattle, with goats foraging at key times of the year), (3) prescribed fire, and (4) prescribed fire followed by cattle grazing. A stakeholder group is engaged in the co-production process to determine alternative practices and how to apply them. Every 5 years, the treatment with the best overall outcomes is applied at a field scale (15 ha), resulting in a core treatment contrast of prevailing versus alternative grazing management systems. This experiment aims to develop alternative agroecological practices that optimize current and future economic and ecosystem benefits.

8.
Environ Manage ; 50(5): 914-28, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22961614

RESUMEN

Managers of the nearly 0.5 million ha of public lands in North and South Dakota, USA rely heavily on manual measurements of canopy height in autumn to ensure conservation of grassland structure for wildlife and forage for livestock. However, more comprehensive assessment of vegetation structure could be achieved for mixed-grass prairie by integrating field survey, topographic position (summit, mid and toeslope) and spectral reflectance data. Thus, we examined the variation of mixed-grass prairie structural attributes (canopy leaf area, standing crop mass, canopy height, nitrogen, and water content) and spectral vegetation indices (VIs) with variation in topographic position at the Grand River National Grassland (GRNG), South Dakota. We conducted the study on a 36,000-ha herbaceous area within the GRNG, where randomly selected plots (1 km(2) in size) were geolocated and included summit, mid and toeslope positions. We tested for effects of topographic position on measured vegetation attributes and VIs calculated from Landsat TM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data collected in July 2010. Leaf area, standing crop mass, canopy height, nitrogen, and water content were lower at summits than at toeslopes. The simple ratio of Landsat Band 7/Band 1 (SR71) was the VI most highly correlated with canopy standing crop and height at plot and landscape scales. Results suggest field and remote sensing-based grassland assessment techniques could more comprehensively target low structure areas at minimal expense by layering modeled imagery over a landscape stratified into topographic position groups.


Asunto(s)
Monitoreo del Ambiente/métodos , Hojas de la Planta , Poaceae , Modelos Teóricos , Nitrógeno/análisis , South Dakota , Agua/análisis
9.
Harmful Algae ; 92: 101771, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32113602

RESUMEN

In the summer of 2010, a sustained multispecies fish kill, affecting primarily adult red drum (Sciaenops ocellatus) and Atlantic stingray (Dasyatis sabina), along with various baitfish such as menhaden (Brevoortia spp.) and shad (Dorosoma spp.), was documented for six weeks along 50 km of the Lower St. Johns River (LSJR), Florida. An Aphanizomenon flos-aquae bloom was present in the freshwater reaches before the fish kill. The kill was triggered by a significant reverse-flow event and sudden influx of high-salinity water in late May that contributed to the collapse of the bloom upstream and brought euryhaline fish downstream into the vicinity of the senescing bloom or its by-products. The decomposing bloom led to a sequence of events, including the release of small amounts of cyanotoxins, bacterial lysis of cyanobacterial cells, high organic loading, and changes in the diversity and dominance of the plankton community to include Microcystis spp., Leptolyngbya sp., Pseudanabaena spp., Planktolyngbya spp., and low concentrations of Heterosigma akashiwo. Dissolved oxygen levels were within normal ranges in the reach of the fish kill, although elevated ammonia concentrations and high pH were detected farther upstream. These conditions resulted in complex pathological changes in fish that were not consistent with acute cyanotoxin exposure or with poor water quality but were attributable to chronic lethal hemolysis. Potential sources of hemolytic activity included H. akashiwo, Microcystis spp., and Bacillus cereus, a hemolytic bacterium. The continued presence of A. flos-aquae in the LSJR could have significant environmental repercussions and ideally the causal factors contributing to bloom growth and maintenance should be fully understood and managed.


Asunto(s)
Aphanizomenon , Cianobacterias , Microcystis , Animales , Florida , Ríos
10.
PLoS One ; 10(8): e0136580, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26308552

RESUMEN

Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability.


Asunto(s)
Agricultura/métodos , Biodiversidad , Productos Agrícolas/clasificación , Productos Agrícolas/crecimiento & desarrollo , Ecosistema , Humanos , Estados Unidos
11.
Evolution ; 35(4): 794-809, 1981 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28563143
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA