Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 585-613, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38424470

RESUMEN

Alzheimer disease (AD) is the most common neurodegenerative disease, and with no efficient curative treatment available, its medical, social, and economic burdens are expected to dramatically increase. AD is historically characterized by amyloid ß (Aß) plaques and tau neurofibrillary tangles, but over the last 25 years chronic immune activation has been identified as an important factor contributing to AD pathogenesis. In this article, we review recent and important advances in our understanding of the significance of immune activation in the development of AD. We describe how brain-resident macrophages, the microglia, are able to detect Aß species and be activated, as well as the consequences of activated microglia in AD pathogenesis. We discuss transcriptional changes of microglia in AD, their unique heterogeneity in humans, and emerging strategies to study human microglia. Finally, we expose, beyond Aß and microglia, the role of peripheral signals and different cell types in immune activation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Microglía , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Humanos , Animales , Microglía/inmunología , Microglía/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Macrófagos/inmunología , Macrófagos/metabolismo
2.
Cell ; 184(20): 5089-5106.e21, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34555357

RESUMEN

Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of inflammatory pathways. Here, we studied how microglia handle and cope with α-synuclein (α-syn) fibrils and their clearance. We found that microglia exposed to α-syn establish a cellular network through the formation of F-actin-dependent intercellular connections, which transfer α-syn from overloaded microglia to neighboring naive microglia where the α-syn cargo got rapidly and effectively degraded. Lowering the α-syn burden attenuated the inflammatory profile of microglia and improved their survival. This degradation strategy was compromised in cells carrying the LRRK2 G2019S mutation. We confirmed the intercellular transfer of α-syn assemblies in microglia using organotypic slice cultures, 2-photon microscopy, and neuropathology of patients. Together, these data identify a mechanism by which microglia create an "on-demand" functional network in order to improve pathogenic α-syn clearance.


Asunto(s)
Estructuras de la Membrana Celular/metabolismo , Microglía/metabolismo , Proteolisis , alfa-Sinucleína/metabolismo , Actinas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Citoesqueleto/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Inflamación/genética , Inflamación/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Masculino , Ratones Endogámicos C57BL , Microglía/patología , Microglía/ultraestructura , Mitocondrias/metabolismo , Nanotubos , Agregado de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma/genética
3.
Immunity ; 57(4): 790-814, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599171

RESUMEN

Activation of the innate immune system following pattern recognition receptor binding has emerged as one of the major pathogenic mechanisms in neurodegenerative disease. Experimental, epidemiological, pathological, and genetic evidence underscores the meaning of innate immune activation during the prodromal as well as clinical phases of several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Importantly, innate immune activation and the subsequent release of inflammatory mediators contribute mechanistically to other hallmarks of neurodegenerative diseases such as aberrant proteostatis, pathological protein aggregation, cytoskeleton abnormalities, altered energy homeostasis, RNA and DNA defects, and synaptic and network disbalance and ultimately to the induction of neuronal cell death. In this review, we discuss common mechanisms of innate immune activation in neurodegeneration, with particular emphasis on the pattern recognition receptors (PRRs) and other receptors involved in the detection of damage-associated molecular patterns (DAMPs).


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Receptores de Reconocimiento de Patrones , Sistema Inmunológico , Mediadores de Inflamación , Inmunidad Innata
5.
Cell ; 165(4): 773-5, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153489

RESUMEN

Homeostatic control of brain metabolism is essential for neuronal activity. Jais et al., (2016) report that reduced brain glucose uptake elicited by a high-fat diet self-corrects by the recruitment of peripheral, VEGF-producing macrophages to the blood-brain barrier. Their findings further suggest that restoring brain glucose availability might help protect from cognitive impairment in Alzheimer's disease.


Asunto(s)
Encéfalo/metabolismo , Glucosa/metabolismo , Enfermedad de Alzheimer/metabolismo , Dieta Alta en Grasa , Humanos , Obesidad/metabolismo
6.
Nat Immunol ; 18(8): 826-831, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28722720

RESUMEN

Biologists, physicians and immunologists have contributed to the understanding of the cellular participants and biological pathways involved in inflammation. Here, we provide a general guide to the cellular and humoral contributors to inflammation as well as to the pathways that characterize inflammation in specific organs and tissues.


Asunto(s)
Enfermedades Transmisibles/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inflamación/inmunología , Enfermedad Aguda , Enfermedad Crónica , Humanos
8.
Nat Immunol ; 16(3): 229-36, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25689443

RESUMEN

Alzheimer's disease (AD) is the world's most common dementing illness, affecting over 150 million patients. Classically AD has been viewed as a neurodegenerative disease of the elderly, characterized by the extracellular deposition of misfolded amyloid-ß (Aß) peptide and the intracellular formation of neurofibrillary tangles. Only recently has neuroinflammation emerged as an important component of AD pathology. Experimental, genetic and epidemiological data now indicate a crucial role for activation of the innate immune system as a disease-promoting factor. The sustained formation and deposition of Aß aggregates causes chronic activation of the immune system and disturbance of microglial clearance functions. Here we review advances in the molecular understanding of the inflammatory response in AD that point to novel therapeutic approaches for the treatment of this devastating disease.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Inmunidad Innata/inmunología , Animales , Humanos , Inflamación/inmunología
9.
Immunity ; 48(2): 195-197, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29466750

RESUMEN

In this issue of Immunity, Mrdjen et al. (2018) use high-dimensional single-cell proteomics and high parametric mass cytometry to provide insight into the long-lasting issue of how to identify and characterize both resident and recruited leukocyte populations in healthy, aged, and diseased CNS.


Asunto(s)
Microglía , Proteómica , Enfermedades del Sistema Nervioso Central , Humanos , Leucocitos
10.
EMBO J ; 40(24): e108662, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34825707

RESUMEN

Chronic neuroinflammation is a pathogenic component of Alzheimer's disease (AD) that may limit the ability of the brain to clear amyloid deposits and cellular debris. Tight control of the immune system is therefore key to sustain the ability of the brain to repair itself during homeostasis and disease. The immune-cell checkpoint receptor/ligand pair PD-1/PD-L1, known for their inhibitory immune function, is expressed also in the brain. Here, we report upregulated expression of PD-L1 and PD-1 in astrocytes and microglia, respectively, surrounding amyloid plaques in AD patients and in the APP/PS1 AD mouse model. We observed juxtamembrane shedding of PD-L1 from astrocytes, which may mediate ectodomain signaling to PD-1-expressing microglia. Deletion of microglial PD-1 evoked an inflammatory response and compromised amyloid-ß peptide (Aß) uptake. APP/PS1 mice deficient for PD-1 exhibited increased deposition of Aß, reduced microglial Aß uptake, and decreased expression of the Aß receptor CD36 on microglia. Therefore, ineffective immune regulation by the PD-1/PD-L1 axis contributes to Aß plaque deposition during chronic neuroinflammation in AD.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Precursor de Proteína beta-Amiloide/genética , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Regulación hacia Arriba , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/toxicidad , Animales , Astrocitos/metabolismo , Antígenos CD36/metabolismo , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Transgénicos , Microglía/metabolismo , Persona de Mediana Edad
11.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743817

RESUMEN

Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional magnetic resonance imaging (fMRI) activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive aging. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analyzed subsequent memory fMRI data from individuals with SCD, MCI, and AD dementia as well as healthy controls (HC) and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-center DELCODE study (N = 468). Based on the individual participants' whole-brain fMRI novelty and subsequent memory responses, we calculated the FADE and SAME scores and assessed their association with AD risk stage, neuropsychological test scores, CSF amyloid positivity, and ApoE genotype. Memory-based FADE and SAME scores showed a considerably larger deviation from a reference sample of young adults in the MCI and AD dementia groups compared to HC, SCD and AD-rel. In addition, novelty-based scores significantly differed between the MCI and AD dementia groups. Across the entire sample, single-value scores correlated with neuropsychological test performance. The novelty-based SAME score further differed between Aß-positive and Aß-negative individuals in SCD and AD-rel, and between ApoE ε4 carriers and non-carriers in AD-rel. Hence, FADE and SAME scores are associated with both cognitive performance and individual risk factors for AD. Their potential utility as diagnostic and prognostic biomarkers warrants further exploration, particularly in individuals with SCD and healthy relatives of AD dementia patients.

12.
Nature ; 575(7784): 669-673, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31748742

RESUMEN

Alzheimer's disease is characterized by the accumulation of amyloid-beta in plaques, aggregation of hyperphosphorylated tau in neurofibrillary tangles and neuroinflammation, together resulting in neurodegeneration and cognitive decline1. The NLRP3 inflammasome assembles inside of microglia on activation, leading to increased cleavage and activity of caspase-1 and downstream interleukin-1ß release2. Although the NLRP3 inflammasome has been shown to be essential for the development and progression of amyloid-beta pathology in mice3, the precise effect on tau pathology remains unknown. Here we show that loss of NLRP3 inflammasome function reduced tau hyperphosphorylation and aggregation by regulating tau kinases and phosphatases. Tau activated the NLRP3 inflammasome and intracerebral injection of fibrillar amyloid-beta-containing brain homogenates induced tau pathology in an NLRP3-dependent manner. These data identify an important role of microglia and NLRP3 inflammasome activation in the pathogenesis of tauopathies and support the amyloid-cascade hypothesis in Alzheimer's disease, demonstrating that neurofibrillary tangles develop downstream of amyloid-beta-induced microglial activation.


Asunto(s)
Inflamasomas/metabolismo , Microglía/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas tau/metabolismo , Animales , Quinasa 5 Dependiente de la Ciclina/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Inflamasomas/genética , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Fosforilación , Agregación Patológica de Proteínas/fisiopatología , Proteínas tau/genética
13.
Nat Rev Neurosci ; 20(3): 187, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30742056

RESUMEN

In the originally published version of this article, the competing interests statement indicated that the authors had no competing interests; however, this statement was incorrect. The statement should have read as follows: 'M.H. receives a consultation fee from IFM Therapeutics, LLC for consultations regarding the pathogenesis and interventional strategies of neurodegenerative disease. E.L. is a scientific co-founder and consultant to IFM Therapeutics. R.M.M. declares no competing interests.' This error has been corrected in the HTML and PDF versions of the article.

14.
Eur J Neurol ; 31(4): e16204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240416

RESUMEN

BACKGROUND AND PURPOSE: In 2016, we concluded a randomized controlled trial testing 1 mg rasagiline per day add-on to standard therapy in 252 amyotrophic lateral sclerosis (ALS) patients. This article aims at better characterizing ALS patients who could possibly benefit from rasagiline by reporting new subgroup analysis and genetic data. METHODS: We performed further exploratory in-depth analyses of the study population and investigated the relevance of single nucleotide polymorphisms (SNPs) related to the dopaminergic system. RESULTS: Placebo-treated patients with very slow disease progression (loss of Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised [ALSFRS-R] per month before randomization of ≤0.328 points) showed a per se survival probability after 24 months of 0.85 (95% confidence interval = 0.65-0.94). The large group of intermediate to fast progressing ALS patients showed a prolonged survival in the rasagiline group compared to placebo after 6 and 12 months (p = 0.02, p = 0.04), and a reduced decline of ALSFRS-R after 18 months (p = 0.049). SNP genotypes in the MAOB gene and DRD2 gene did not show clear associations with rasagiline treatment effects. CONCLUSIONS: These results underline the need to consider individual disease progression at baseline in future ALS studies. Very slow disease progressors compromise the statistical power of studies with treatment durations of 12-18 months using clinical endpoints. Analysis of MAOB and DRD2 SNPs revealed no clear relationship to any outcome parameter. More insights are expected from future studies elucidating whether patients with DRD2CC genotype (Rs2283265) show a pronounced benefit from treatment with rasagiline, pointing to the opportunities precision medicine could open up for ALS patients in the future.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/complicaciones , Indanos/uso terapéutico , Progresión de la Enfermedad
15.
Environ Sci Technol ; 58(9): 4181-4192, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373301

RESUMEN

Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease, which is currently diagnosed via clinical symptoms and nonspecific biomarkers (such as Aß1-42, t-Tau, and p-Tau) measured in cerebrospinal fluid (CSF), which alone do not provide sufficient insights into disease progression. In this pilot study, these biomarkers were complemented with small-molecule analysis using non-target high-resolution mass spectrometry coupled with liquid chromatography (LC) on the CSF of three groups: AD, mild cognitive impairment (MCI) due to AD, and a non-demented (ND) control group. An open-source cheminformatics pipeline based on MS-DIAL and patRoon was enhanced using CSF- and AD-specific suspect lists to assist in data interpretation. Chemical Similarity Enrichment Analysis revealed a significant increase of hydroxybutyrates in AD, including 3-hydroxybutanoic acid, which was found at higher levels in AD compared to MCI and ND. Furthermore, a highly sensitive target LC-MS method was used to quantify 35 bile acids (BAs) in the CSF, revealing several statistically significant differences including higher dehydrolithocholic acid levels and decreased conjugated BA levels in AD. This work provides several promising small-molecule hypotheses that could be used to help track the progression of AD in CSF samples.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/psicología , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proyectos Piloto , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Biomarcadores , Progresión de la Enfermedad
16.
Brain ; 146(5): 2075-2088, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36288546

RESUMEN

Previous studies have shown that the cholinergic nucleus basalis of Meynert and its white matter projections are affected in Alzheimer's disease dementia and mild cognitive impairment. However, it is still unknown whether these alterations can be found in individuals with subjective cognitive decline, and whether they are more pronounced than changes found in conventional brain volumetric measurements. To address these questions, we investigated microstructural alterations of two major cholinergic pathways in individuals along the Alzheimer's disease continuum using an in vivo model of the human cholinergic system based on neuroimaging. We included 402 participants (52 Alzheimer's disease, 66 mild cognitive impairment, 172 subjective cognitive decline and 112 healthy controls) from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study. We modelled the cholinergic white matter pathways with an enhanced diffusion neuroimaging pipeline that included probabilistic fibre-tracking methods and prior anatomical knowledge. The integrity of the cholinergic white matter pathways was compared between stages of the Alzheimer's disease continuum, in the whole cohort and in a CSF amyloid-beta stratified subsample. The discriminative power of the integrity of the pathways was compared to the conventional volumetric measures of hippocampus and nucleus basalis of Meynert, using a receiver operating characteristics analysis. A multivariate model was used to investigate the role of these pathways in relation to cognitive performance. We found that the integrity of the cholinergic white matter pathways was significantly reduced in all stages of the Alzheimer's disease continuum, including individuals with subjective cognitive decline. The differences involved posterior cholinergic white matter in the subjective cognitive decline stage and extended to anterior frontal white matter in mild cognitive impairment and Alzheimer's disease dementia stages. Both cholinergic pathways and conventional volumetric measures showed higher predictive power in the more advanced stages of the disease, i.e. mild cognitive impairment and Alzheimer's disease dementia. In contrast, the integrity of cholinergic pathways was more informative in distinguishing subjective cognitive decline from healthy controls, as compared with the volumetric measures. The multivariate model revealed a moderate contribution of the cholinergic white matter pathways but not of volumetric measures towards memory tests in the subjective cognitive decline and mild cognitive impairment stages. In conclusion, we demonstrated that cholinergic white matter pathways are altered already in subjective cognitive decline individuals, preceding the more widespread alterations found in mild cognitive impairment and Alzheimer's disease. The integrity of the cholinergic pathways identified the early stages of Alzheimer's disease better than conventional volumetric measures such as hippocampal volume or volume of cholinergic nucleus basalis of Meynert.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Sustancia Blanca , Humanos , Enfermedad de Alzheimer/psicología , Encéfalo , Disfunción Cognitiva/psicología , Colinérgicos
17.
Alzheimers Dement ; 20(4): 2632-2652, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38375983

RESUMEN

INTRODUCTION: The most significant genetic risk factor for late-onset Alzheimer's disease (AD) is APOE4, with evidence for gain- and loss-of-function mechanisms. A clinical need remains for therapeutically relevant tools that potently modulate APOE expression. METHODS: We optimized small interfering RNAs (di-siRNA, GalNAc) to potently silence brain or liver Apoe and evaluated the impact of each pool of Apoe on pathology. RESULTS: In adult 5xFAD mice, siRNAs targeting CNS Apoe efficiently silenced Apoe expression and reduced amyloid burden without affecting systemic cholesterol, confirming that potent silencing of brain Apoe is sufficient to slow disease progression. Mechanistically, silencing Apoe reduced APOE-rich amyloid cores and activated immune system responses. DISCUSSION: These results establish siRNA-based modulation of Apoe as a viable therapeutic approach, highlight immune activation as a key pathway affected by Apoe modulation, and provide the technology to further evaluate the impact of APOE silencing on neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteína E4/genética , Amiloide/metabolismo , Encéfalo/patología , Proteínas Amiloidogénicas/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos
18.
Alzheimers Dement ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940303

RESUMEN

INTRODUCTION: Blood-based biomarkers are a cost-effective and minimally invasive method for diagnosing the early and preclinical stages of amyloid positivity (AP). Our study aims to investigate our novel immunoprecipitation-immunoassay (IP-IA) as a test for predicting cognitive decline. METHODS: We measured levels of amyloid beta (Aß)X-40 and AßX-42 in immunoprecipitated eluates from the DELCODE cohort. Receiver-operating characteristic (ROC) curves, regression analyses, and Cox proportional hazard regression models were constructed to predict AP by Aß42/40 classification in cerebrospinal fluid (CSF) and conversion to mild cognitive impairment (MCI) or dementia. RESULTS: We detected a significant correlation between AßX-42/X-40 in plasma and CSF (r = 0.473). Mixed-modeling analysis revealed a substantial prediction of AßX-42/X-40 with an area under the curve (AUC) of 0.81 for AP (sensitivity: 0.79, specificity: 0.74, positive predictive value [PPV]: 0.71, negative predictive value [NPV]: 0.81). In addition, lower AßX-42/X-40 ratios were associated with negative PACC5 slopes, suggesting cognitive decline. DISCUSSION: Our results suggest that assessing the plasma AßX-42/X-40 ratio via our semiautomated IP-IA is a promising biomarker when examining patients with early or preclinical AD. HIGHLIGHTS: New plasma Aß42/Aß40 measurement using immunoprecipitation-immunoassay Plasma Aß42/Aß40 associated with longitudinal cognitive decline Promising biomarker to detect subjective cognitive decline at-risk for brain amyloid positivity.

19.
Glia ; 71(2): 168-186, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373840

RESUMEN

Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Ratones , Animales , Humanos , Epilepsia del Lóbulo Temporal/patología , Astrocitos/patología , Factor de Necrosis Tumoral alfa , Microglía/patología , Hipocampo/patología , Convulsiones/patología , Estado Epiléptico/patología , Ácido Kaínico/toxicidad , Modelos Animales de Enfermedad , Ratones Noqueados
20.
J Neurochem ; 166(3): 517-533, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37278117

RESUMEN

The highest risk factor for the development of neurodegenerative diseases like tauopathies is aging. Many physiological decrements underlying aging are linked to cellular senescence. Senescent cells are characterized by an irreversible growth arrest and formation of a senescence-associated secretory phenotype (SASP), a proinflammatory secretome that modifies the cellular microenvironment and contributes to tissue deterioration. Microglia, the innate immune cells in the brain, can enter a senescent state during aging. In addition, senescent microglia have been identified in the brains of tau-transgenic mice and patients suffering from tauopathies. While the contribution of senescent microglia to the development of tauopathies and other neurodegenerative diseases is a growing area of research, the effect of tau on microglial senescence remains elusive. Here, we exposed primary microglia to 5 and 15 nanomolar (nM) of monomeric tau for 18 h, followed by a recovery period of 48 h. Using multiple senescence markers, we found that exposure to 15 nM, but not 5 nM of tau increased levels of cell cycle arrest and a DNA damage marker, induced loss of the nuclear envelope protein lamin B1 and the histone marker H3K9me3, impaired tau clearance and migration, altered the cell morphology and resulted in formation of a SASP. Taken together, we show that exposure to tau can lead to microglial senescence. As senescent cells were shown to negatively impact tau pathologies, this suggests the presence of a vicious circle, which should be further investigated in the future.


Asunto(s)
Microglía , Tauopatías , Ratones , Animales , Envejecimiento/genética , Senescencia Celular/fisiología , Biomarcadores , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA