Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(5): e104267, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33491217

RESUMEN

Impairments in social relationships and awareness are features observed in autism spectrum disorders (ASDs). However, the underlying mechanisms remain poorly understood. Shank2 is a high-confidence ASD candidate gene and localizes primarily to postsynaptic densities (PSDs) of excitatory synapses in the central nervous system (CNS). We show here that loss of Shank2 in mice leads to a lack of social attachment and bonding behavior towards pubs independent of hormonal, cognitive, or sensitive deficits. Shank2-/- mice display functional changes in nuclei of the social attachment circuit that were most prominent in the medial preoptic area (MPOA) of the hypothalamus. Selective enhancement of MPOA activity by DREADD technology re-established social bonding behavior in Shank2-/- mice, providing evidence that the identified circuit might be crucial for explaining how social deficits in ASD can arise.


Asunto(s)
Trastorno Autístico/tratamiento farmacológico , Modelos Animales de Enfermedad , Relaciones Interpersonales , Conducta Materna/efectos de los fármacos , Proteínas del Tejido Nervioso/fisiología , Piperazinas/farmacología , Área Preóptica/efectos de los fármacos , Animales , Trastorno Autístico/etiología , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Área Preóptica/metabolismo , Área Preóptica/patología , Sinapsis
2.
Eur J Neurosci ; 59(5): 996-1015, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326849

RESUMEN

Basal amygdala (BA) neurons projecting to nucleus accumbens (NAc) core/shell are primarily glutamatergic and are integral to the circuitry of emotional processing. Several recent mouse studies have addressed whether neurons in this population(s) respond to reward, aversion or both emotional valences. The focus has been on processing of physical emotional stimuli, and here, we extend this to salient social stimuli. In male mice, an iterative study was conducted into engagement of BA-NAc neurons in response to estrous female (social reward, SR) and/or aggressive-dominant male (social aversion, SA). In BL/6J mice, SR and SA activated c-Fos expression in a high and similar number/density of BA-NAc neurons in the anteroposterior intermediate BA (int-BA), whereas activation was predominantly by SA in posterior (post-)BA. In Fos-TRAP2 mice, compared with SR-SR or SA-SA controls, exposure to successive presentation of SR-SA or SA-SR, followed by assessment of tdTomato reporter and/or c-Fos expression, demonstrated that many int-BA-NAc neurons were activated by only one of SR and SA; these SR/SA monovalent neurons were similar in number and present in both magnocellular and parvocellular int-BA subregions. In freely moving BL/6J mice exposed to SR, bulk GCaMP6 fibre photometry provided confirmatory in vivo evidence for engagement of int-BA-NAc neurons during social and sexual interactions. Therefore, populations of BA-NAc glutamate neurons are engaged by salient rewarding and aversive social stimuli in a topographic and valence-specific manner; this novel evidence is important to the overall understanding of the roles of this pathway in the circuitry of socio-emotional processing.


Asunto(s)
Complejo Nuclear Basolateral , Núcleo Accumbens , Proteína Fluorescente Roja , Ratones , Masculino , Femenino , Animales , Núcleo Accumbens/metabolismo , Ácido Glutámico/metabolismo , Neuronas/fisiología , Recompensa
3.
Eur J Neurosci ; 57(1): 54-63, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382836

RESUMEN

Fear and anxiety are adaptive states that allow humans and animals alike to respond appropriately to threatening cues in their environment. Commonly used tasks for studying behaviour akin to fear and anxiety in rodent models are Pavlovian threat conditioning and the elevated plus maze (EPM), respectively. In threat conditioning the rodents learn to associate an aversive event with a specific stimulus or context. The learnt association between the two stimuli (the 'memory') can then be recalled by re-exposing the subject to the conditioned stimulus. The elevated plus maze is argued to measure the agoraphobic avoidance of the brightly lit open maze arms in crepuscular rodents. These two tasks have been used extensively, yet research into whether they interact is scarce. We investigated whether recall of an aversive memory, across contextual, odour or auditory modalities, would potentiate anxiety-like behaviour in the elevated plus maze. The data did not support that memory recall, even over a series of time points, could influence EPM behaviour. Furthermore, there was no correlation between EPM behaviour and conditioned freezing in independent cohorts tested in the EPM before or after auditory threat conditioning. Further analysis found the production of 22 kHz ultrasonic vocalisations revealed the strongest responders to a conditioned threat cue. These results are of particular importance for consideration when using the EPM and threat conditioning to identify individual differences and the possibility to use the tasks in batteries of tests without cross-task interference.


Asunto(s)
Señales (Psicología) , Prueba de Laberinto Elevado , Animales , Humanos , Aprendizaje por Laberinto , Ansiedad , Miedo
4.
Mol Psychiatry ; 27(8): 3544-3555, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35449298

RESUMEN

The cumulative load of genetic predisposition, early life adversity (ELA) and lifestyle shapes the prevalence of psychiatric disorders. Single nucleotide polymorphisms (SNPs) in the human FKBP5 gene were shown to modulate disease risk. To enable investigation of disease-related SNPs in behaviourally relevant context, we generated humanised mouse lines carrying either the risk (AT) or the resiliency (CG) allele of the rs1360780 locus and exposed litters of these mice to maternal separation. Behavioural and physiological aspects of their adult stress responsiveness displayed interactions of genotype, early life condition, and sex. In humanised females carrying the CG- but not the AT-allele, ELA led to altered HPA axis functioning, exploratory behaviour, and sociability. These changes correlated with differential expression of genes in the hypothalamus, where synaptic transmission, metabolism, and circadian entrainment pathways were deregulated. Our data suggest an integrative role of FKBP5 in shaping the sex-specific outcome of ELA in adulthood.


Asunto(s)
Ritmo Circadiano , Sistema Hipotálamo-Hipofisario , Estrés Psicológico , Proteínas de Unión a Tacrolimus , Animales , Femenino , Humanos , Masculino , Ratones , Ritmo Circadiano/genética , Genotipo , Sistema Hipotálamo-Hipofisario/metabolismo , Privación Materna , Sistema Hipófiso-Suprarrenal/metabolismo , Polimorfismo de Nucleótido Simple , Estrés Psicológico/genética , Estrés Psicológico/psicología , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
5.
Eur J Neurosci ; 55(9-10): 2955-2970, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33502040

RESUMEN

Studies in human and non-human species suggest that decision-making behaviour can be biased by an affective state, also termed an affective bias. To study these behaviours in non-human species, judgement bias tasks (JBT) have been developed. Animals are trained to associate specific cues (tones) with a positive or negative/less positive outcome. Animals are then presented with intermediate ambiguous cues and affective biases quantified by observing whether animals make more optimistic or more pessimistic choices. Here we use a high versus low reward JBT and test whether pharmacologically distinct compounds, which induce negative biases in learning and memory, have similar effects on decision-making: tetrabenazine (0.0-1.0 mg/kg), retinoic acid (0.0-10.0 mg/kg), and rimonabant (0.0-10.0 mg/kg). We also tested immunomodulatory compounds: interferon-α (0-100 units/kg), lipopolysaccharide (0.0-10.0 µg/kg), and corticosterone (0.0-10.0 mg/kg). We observed no specific effects in the JBT with any acute treatment except corticosterone which induced a negative bias. We have previously observed a similar lack of effect with acute but not chronic psychosocial stress and so next tested decision-making behaviour following chronic interferon-alpha. Animals developed a negative bias which was sustained even after treatment was ended. These data suggest that decision-making behaviour in the task is sensitive to chronic but not acute effects of most pro-depressant drugs or immunomodulators, but the exogenous administration of acute corticosterone induces pessimistic behaviour. This work supports our hypothesis that biases in decision-making develop over a different temporal scale to those seen with learning and memory which may be relevant in the development and perpetuation of mood disorders.


Asunto(s)
Corticosterona , Agentes Inmunomoduladores , Animales , Sesgo , Corticosterona/farmacología , Interferón-alfa , Juicio , Ratas
6.
Eur J Neurosci ; 53(2): 402-415, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33030232

RESUMEN

The brain is a central hub for integration of internal and external conditions and, thus, a regulator of the stress response. Glucocorticoids are the essential communicators of this response. Aberrations in glucocorticoid signaling are a common symptom in patients with psychiatric disorders. The gene FKBP5 encodes a chaperone protein that functionally inhibits glucocorticoid signaling and, thus, contributes to the regulation of stress. In the context of childhood trauma, differential expression of FKBP5 has been found in psychiatric patients compared to controls. These variations in expression levels of FKBP5 were reported to be associated with differences in stress responsiveness in human carriers of the single nucleotide polymorphism (SNP) rs1360780. Understanding the mechanisms underlying FKBP5 polymorphism-associated glucocorticoid responsiveness in the CNS will lead to a better understanding of stress regulation or associated pathology. To study these mechanisms, two novel humanized mouse lines were generated. The lines carried either the risk (A/T) allele or the resilient (C/G) allele of rs1360780. Primary cells from CNS (astrocytes, microglia, and neurons) were analyzed for their basal expression levels of FKBP5 and their responsiveness to glucocorticoids. Differential expression of FKBP5 was found for these cell types and negatively correlated with the cellular glucocorticoid responsiveness. Astrocytes revealed the strongest transcriptional response, followed by microglia and neurons. Furthermore, the risk allele (A/T) was associated with greater induction of FKBP5 than the resilience allele. Novel FKBP5-humanized mice display differential glucocorticoid responsiveness due to a single intronic SNP. The vulnerability to stress signaling in the shape of glucocorticoids in the brain correlated with FKBP5 expression levels. The strong responsiveness of astrocytes to glucocorticoids implies astrocytes play a prominent role in the stress response, and in FKBP5-related differences in glucocorticoid signaling. The novel humanized mouse lines will allow for further study of the role that FKBP5 SNPs have in risk and resilience to stress pathology.


Asunto(s)
Glucocorticoides , Proteínas de Unión a Tacrolimus , Alelos , Animales , Heterocigoto , Humanos , Ratones , Neuronas , Polimorfismo de Nucleótido Simple , Proteínas de Unión a Tacrolimus/genética
7.
Expert Rev Proteomics ; 14(6): 499-514, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28562112

RESUMEN

INTRODUCTION: Major Depressive Disorder (MDD) is the leading cause of global disability, and an increasing body of literature suggests different cerebrospinal fluid (CSF) proteins as biomarkers of MDD. The aim of this review is to summarize the suggested CSF biomarkers and to analyze the MDD proteomics studies of CSF and brain tissues for promising biomarker candidates. Areas covered: The review includes the human studies found by a PubMed search using the following terms: 'depression cerebrospinal fluid biomarker', 'major depression biomarker CSF', 'depression CSF biomarker', 'proteomics depression', 'proteomics biomarkers in depression', 'proteomics CSF biomarker in depression', and 'major depressive disorder CSF'. The literature analysis highlights promising biomarker candidates and demonstrates conflicting results on others. It reveals 42 differentially regulated proteins in MDD that were identified in more than one proteomics study. It discusses the diagnostic potential of the biomarker candidates and their association with the suggested pathologies. Expert commentary: One ultimate goal of finding biomarkers for MDD is to improve the diagnostic accuracy to achieve better treatment outcomes; due to the heterogeneous nature of MDD, using bio-signatures could be a good strategy to differentiate MDD from other neuropsychiatric disorders. Notably, further validation studies of the suggested biomarkers are still needed.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Proteínas del Líquido Cefalorraquídeo/genética , Trastorno Depresivo Mayor/líquido cefalorraquídeo , Proteómica , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/patología , Humanos
8.
Acta Neuropathol ; 131(3): 379-91, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26576561

RESUMEN

Extracellular alpha-synuclein (αsyn) oligomers, associated to exosomes or free, play an important role in the pathogenesis of Parkinson's disease (PD). Increasing evidence suggests that these extracellular moieties activate microglia leading to enhanced neuronal damage. Despite extensive efforts on studying neuroinflammation in PD, little is known about the impact of age on microglial activation and phagocytosis, especially of extracellular αsyn oligomers. Here, we show that microglia isolated from adult mice, in contrast to microglia from young mice, display phagocytosis deficits of free and exosome-associated αsyn oligomers combined with enhanced TNFα secretion. In addition, we describe a dysregulation of monocyte subpopulations with age in mice and humans. Accordingly, human monocytes from elderly donors also show reduced phagocytic activity of extracellular αsyn. These findings suggest that these age-related alterations may contribute to an increased susceptibility to pathogens or abnormally folded proteins with age in neurodegenerative diseases.


Asunto(s)
Envejecimiento/metabolismo , Microglía/metabolismo , Monocitos/metabolismo , alfa-Sinucleína/metabolismo , Animales , Células Cultivadas , Cromatografía en Gel , Ensayo de Inmunoadsorción Enzimática , Exosomas/metabolismo , Femenino , Citometría de Flujo , Humanos , Immunoblotting , Ratones , Enfermedad de Parkinson/metabolismo , Fagocitosis/fisiología
9.
Acta Neuropathol ; 132(3): 391-411, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26910103

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease affecting primarily the upper and lower motor neurons. A common feature of all ALS cases is a well-characterized neuroinflammatory reaction within the central nervous system (CNS). However, much less is known about the role of the peripheral immune system and its interplay with CNS resident immune cells in motor neuron degeneration. Here, we characterized peripheral monocytes in both temporal and spatial dimensions of ALS pathogenesis. We found the circulating monocytes to be deregulated in ALS regarding subtype constitution, function and gene expression. Moreover, we show that CNS infiltration of peripheral monocytes correlates with improved motor neuron survival in a genetic ALS mouse model. Furthermore, application of human immunoglobulins or fusion proteins containing only the human Fc, but not the Fab antibody fragment, increased CNS invasion of peripheral monocytes and delayed the disease onset. Our results underline the importance of peripheral monocytes in ALS pathogenesis and are in agreement with a protective role of monocytes in the early phase of the disease. The possibility to boost this beneficial function of peripheral monocytes by application of human immunoglobulins should be evaluated in clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Sistema Nervioso Central/metabolismo , Leucocitos Mononucleares/metabolismo , Monocitos/metabolismo , Sistema Mononuclear Fagocítico/metabolismo , Neuronas Motoras/patología , Médula Espinal/patología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Médula Espinal/metabolismo
10.
Brain Behav Immun ; 54: 59-72, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26724575

RESUMEN

Psychosocial stress is a major risk factor for mood and anxiety disorders, in which excessive reactivity to aversive events/stimuli is a major psychopathology. In terms of pathophysiology, immune-inflammation is an important candidate, including high blood and brain levels of metabolites belonging to the kynurenine pathway. Animal models are needed to study causality between psychosocial stress, immune-inflammation and hyper-reactivity to aversive stimuli. The present mouse study investigated effects of psychosocial stress as chronic social defeat (CSD) versus control-handling (CON) on: Pavlovian tone-shock fear conditioning, activation of the kynurenine pathway, and efficacy of a specific inhibitor (IDOInh) of the tryptophan-kynurenine catabolising enzyme indoleamine 2,3-dioxygenase (IDO1), in reversing CSD effects on the kynurenine pathway and fear. CSD led to excessive fear learning and memory, whilst repeated oral escitalopram (antidepressant and anxiolytic) reversed excessive fear memory, indicating predictive validity of the model. CSD led to higher blood levels of TNF-α, IFN-γ, kynurenine (KYN), 3-hydroxykynurenine (3-HK) and kynurenic acid, and higher KYN and 3-HK in amygdala and hippocampus. CSD was without effect on IDO1 gene or protein expression in spleen, ileum and liver, whilst increasing liver TDO2 gene expression. Nonetheless, oral IDOInh reduced blood and brain levels of KYN and 3-HK in CSD mice to CON levels, and we therefore infer that CSD increases IDO1 activity by increasing its post-translational activation. Furthermore, repeated oral IDOInh reversed excessive fear memory in CSD mice to CON levels. IDOInh reversal of CSD-induced hyper-activity in the kynurenine pathway and fear system contributes significantly to the evidence for a causal pathway between psychosocial stress, immune-inflammation and the excessive fearfulness that is a major psychopathology in stress-related neuropsychiatric disorders.


Asunto(s)
Encéfalo/metabolismo , Citalopram/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Quinurenina/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Animales , Antidepresivos de Segunda Generación/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Miedo/efectos de los fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ácido Quinurénico/metabolismo , Quinurenina/análogos & derivados , Quinurenina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Estrés Psicológico/enzimología , Estrés Psicológico/psicología , Triptófano/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Brain Behav Immun ; 50: 125-140, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26173174

RESUMEN

The similarity between sickness behavior syndrome (SBS) in infection and autoimmune disorders and certain symptoms in major depressive disorder (MDD), and the high co-morbidity of autoimmune disorders and MDD, constitutes some of the major evidence for the immune-inflammation hypothesis of MDD. CD40 ligand-CD40 immune-activation is important in host response to infection and in development of autoimmunity. Mice given a single intra-peritoneal injection of CD40 agonist antibody (CD40AB) develop SBS for 2-3days characterized by weight loss and increased sleep, effects that are dependent on the cytokine, tumor necrosis factor (TNF). Here we report that CD40AB also induces behavioral effects that extend beyond acute SBS and co-occur with but are not mediated by kynurenine pathway activation and recovery. CD40AB led to decreased saccharin drinking (days 1-7) and decreased Pavlovian fear conditioning (days 5-6), and was without effect on physical fatigue (day 5). These behavioral effects co-occurred with increased plasma and brain levels of kynurenine and its metabolites (days 1-7/8). Co-injection of TNF blocker etanercept with CD40AB prevented each of SBS, reduced saccharin drinking, and kynurenine pathway activation in plasma and brain. Repeated oral administration of a selective indoleamine 2,3-dioxygenase (IDO) inhibitor blocked activation of the kynurenine pathway but was without effect on SBS and saccharin drinking. This study provides novel evidence that CD40-TNF activation induces deficits in saccharin drinking and Pavlovian fear learning and activates the kynurenine pathway, and that CD40-TNF activation of the kynurenine pathway is not necessary for induction of the acute or extended SBS effects.


Asunto(s)
Antígenos CD40/inmunología , Ligando de CD40/inmunología , Conducta de Enfermedad/fisiología , Quinurenina/inmunología , Transducción de Señal , Factor de Necrosis Tumoral alfa/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Conducta Animal/efectos de los fármacos , Antígenos CD40/agonistas , Ligando de CD40/metabolismo , Condicionamiento Psicológico/efectos de los fármacos , Trastorno Depresivo Mayor/inmunología , Trastorno Depresivo Mayor/metabolismo , Conducta de Ingestión de Líquido/efectos de los fármacos , Miedo/efectos de los fármacos , Conducta de Enfermedad/efectos de los fármacos , Quinurenina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/inmunología , Transducción de Señal/efectos de los fármacos , Síndrome , Factor de Necrosis Tumoral alfa/metabolismo
12.
Acta Neuropathol ; 128(5): 651-63, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25284487

RESUMEN

Despite extensive effort on studying inflammatory processes in the CNS of Parkinson's disease (PD) patients, implications of peripheral monocytes are still poorly understood. Here, we set out to obtain a comprehensive picture of circulating myeloid cells in PD patients. We applied a human primary monocyte culture system and flow cytometry-based techniques to determine the state of monocytes from PD patients during disease. We found that the classical monocytes are enriched in the blood of PD patients along with an increase in the monocyte-recruiting chemoattractant protein CCL2. Moreover, we found that monocytes from PD patients display a pathological hyperactivity in response to LPS stimulation that correlates with disease severity. Inflammatory pre-conditioning was also reflected on the transcriptome in PD monocytes using next-generation sequencing. Further, we identified the CD95/CD95L as a key regulator for the PD-associated alteration of circulating monocytes. Pharmacological neutralization of CD95L reverses the dysregulation of monocytic subpopulations in favor of non-classical monocytes. Our results suggest that PD monocytes are in an inflammatory predisposition responding with hyperactivation to a "second hit". These results provide the first direct evidence that circulating human peripheral blood monocytes are altered in terms of their function and composition in PD patients. This study provides insights into monocyte biology in PD and establishes a basis for future studies on peripheral inflammation.


Asunto(s)
Inflamación/etiología , Inflamación/patología , Monocitos/patología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Antígenos CD/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Estudios de Cohortes , Medios de Cultivo/química , Citocinas/metabolismo , Femenino , Citometría de Flujo , Humanos , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Masculino , Monocitos/efectos de los fármacos , Fagocitosis , Escalas de Valoración Psiquiátrica , ARN Mensajero/metabolismo
13.
Sci Transl Med ; 16(729): eadi2403, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198569

RESUMEN

How rapid-acting antidepressants (RAADs), such as ketamine, induce immediate and sustained improvements in mood in patients with major depressive disorder (MDD) is poorly understood. A core feature of MDD is the prevalence of cognitive processing biases associated with negative affective states, and the alleviation of negative affective biases may be an index of response to drug treatment. Here, we used an affective bias behavioral test in rats, based on an associative learning task, to investigate the effects of RAADs. To generate an affective bias, animals learned to associate two different digging substrates with a food reward in the presence or absence of an affective state manipulation. A choice between the two reward-associated digging substrates was used to quantify the affective bias generated. Acute treatment with the RAADs ketamine, scopolamine, or psilocybin selectively attenuated a negative affective bias in the affective bias test. Low, but not high, doses of ketamine and psilocybin reversed the valence of the negative affective bias 24 hours after RAAD treatment. Only treatment with psilocybin, but not ketamine or scopolamine, led to a positive affective bias that was dependent on new learning and memory formation. The relearning effects of ketamine were dependent on protein synthesis localized to the rat medial prefrontal cortex and could be modulated by cue reactivation, consistent with experience-dependent neural plasticity. These findings suggest a neuropsychological mechanism that may explain both the acute and sustained effects of RAADs, potentially linking their effects on neural plasticity with affective bias modulation in a rodent model.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Humanos , Ratas , Animales , Trastorno Depresivo Mayor/tratamiento farmacológico , Ketamina/farmacología , Psilocibina , Antidepresivos/farmacología , Sesgo , Escopolamina
14.
Biochemistry ; 52(8): 1466-76, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23374097

RESUMEN

In Alzheimer's disease, substantial evidence indicates the causative role of soluble amyloid ß (Aß) aggregates. Although a variety of Aß assemblies have been described, the debate about their individual relevance is still ongoing. One critical issue hampering this debate is the use of different methods for the characterization of endogenous and synthetic peptide and their intrinsic limitations for distinguishing Aß aggregates. Here, we used different protocols for the establishment of prefibrillar Aß assemblies with varying morphologies and sizes and compared them in a head-to-head fashion. Aggregation was characterized via the monomeric peptide over time until spheroidal, protofibrillar, or fibrillar Aß aggregates were predominant. It could be shown that a change in the ionic environment induced a structural rearrangement, which consequently confounds the delineation of a measured neurotoxicity toward a distinct Aß assembly. Here, neuronal binding and hippocampal neurotransmission were found to be suitable to account for the synaptotoxicity to different Aß assemblies, based on the stability of the applied Aß aggregates in these settings. In contrast to monomeric or fibrillar Aß, different prefibrillar Aß aggregates targeted neurons and impaired hippocampal neurotransmission with nanomolar potency, albeit by different modalities. Spheroidal Aß aggregates inhibited NMDAR-dependent long-term potentiation, as opposed to protofibrillar Aß aggregates, which inhibited AMPAR-dominated basal neurotransmission. In addition, a provoked structural conversion of spheroidal to protofibrillar Aß assemblies resulted in a time-dependent suppression of basal neurotransmission, indicative of a mechanistic switch in synaptic impairment. Thus, we emphasize the importance of addressing the metastability of prefacto characterized Aß aggregates in assigning a biological effect.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Hipocampo/fisiopatología , Neuronas/patología , Transmisión Sináptica , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/química , Animales , Células Cultivadas , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Ratas , Ratas Wistar
15.
Front Neurosci ; 17: 1177428, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266546

RESUMEN

Introduction: S-ketamine has received great interest due to both its antidepressant effects and its potential to induce psychosis when administered subchronically. However, no studies have investigated both its acute and delayed effects using in vivo small-animal imaging. Recently, functional ultrasound (fUS) has emerged as a powerful alternative to functional magnetic resonance imaging (fMRI), outperforming it in sensitivity and in spatiotemporal resolution. In this study, we employed fUS to thoroughly characterize acute and delayed S-ketamine effects on functional connectivity (FC) within the same cohort at slow frequency bands ranging from 0.01 to 1.25 Hz, previously reported to exhibit FC. Methods: We acquired fUS in a total of 16 healthy C57/Bl6 mice split in two cohorts (n = 8 received saline, n = 8 S-ketamine). One day after the first scans, performed at rest, the mice received the first dose of S-ketamine during the second measurement, followed by four further doses administered every 2 days. First, we assessed FC reproducibility and reliability at baseline in six frequency bands. Then, we investigated the acute and delayed effects at day 1 after the first dose and at day 9, 1 day after the last dose, for all bands, resulting in a total of four fUS measurements for every mouse. Results: We found reproducible (r > 0.9) and reliable (r > 0.9) group-average readouts in all frequency bands, only the 0.01-0.27 Hz band performing slightly worse. Acutely, S-ketamine induced strong FC increases in five of the six bands, peaking in the 0.073-0.2 Hz band. These increases comprised both cortical and subcortical brain areas, yet were of a transient nature, FC almost returning to baseline levels towards the end of the scan. Intriguingly, we observed robust corticostriatal FC decreases in the fastest band acquired (0.75 Hz-1.25 Hz). These changes persisted to a weaker extent after 1 day and at this timepoint they were accompanied by decreases in the other five bands as well. After 9 days, the decreases in the 0.75-1.25 Hz band were maintained, however no changes between cohorts could be detected in any other bands. Discussion: In summary, the study reports that acute and delayed ketamine effects in mice are not only dissimilar but have different directionalities in most frequency bands. The complementary readouts of the employed frequency bands recommend the use of fUS for frequency-specific investigation of pharmacological effects on FC.

16.
STAR Protoc ; 4(2): 102164, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36933222

RESUMEN

Developing an in vitro platform to study neuron-oligodendrocyte interaction, particularly myelination, is essential to understand aberrant myelination in neuropsychiatric and neurodegenerative diseases. Here, we provide a controlled, direct co-culture protocol for human induced-pluripotent-stem-cell (hiPSC)-derived neurons and oligodendrocytes on three-dimensional (3D) nanomatrix plates. We describe steps to differentiate hiPSCs into cortical neurons and oligodendrocyte lineage cells on 3D nanofibers. We then detail the detachment and isolation of the oligodendrocyte lineage cells, followed by neuron-oligodendrocyte co-culture in this 3D microenvironment.

17.
Psychoneuroendocrinology ; 147: 105953, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334546

RESUMEN

Chronic stress is a known risk factor for the development of major depression (MDD) and is commonly used to induce a depression-like phenotype in rodents. Similar phenotypic effects are also observed in rodents when treated chronically with the stress hormone corticosterone. In this study, we investigated the neuropsychological consequences of chronic corticosterone treatment in male rats using two translational rodent assays of affective bias, the judgement bias task (JBT) and affective bias test (ABT). We also used the reward learning assay (RLA) and sucrose preference test (SPT) to quantify reward-related behaviours. Negative biases in decision-making were observed in the chronic corticosterone-treated group but only when the treatment was given shortly before each behavioural session. The same dose of corticosterone, when given daily after completion of the behavioural session had no effects. Chronic corticosterone treatment did not potentiate negative affective biases in the ABT induced by either an acute pharmacological or stress manipulation but both reward learning and reward sensitivity were blunted. Analysis of the brain tissue from animals receiving chronic corticosterone found reduced hippocampal neurogenesis consistent with previous studies suggesting corticosterone-induced neurotrophic deficits. Taken together, these data suggest chronic corticosterone treatment induces neuropsychological effects related to changes in reward learning, memory and negative biases in decision making, but these decision-making biases depend on whether rewarding outcomes were experienced during the acute effects of the drug. These findings suggest an important interaction between psychological and biological factors resulting in negative biases in decision-making in this model.


Asunto(s)
Corticosterona , Trastorno Depresivo Mayor , Ratas , Masculino , Animales , Corticosterona/farmacología , Depresión/psicología , Recompensa , Juicio
18.
Commun Biol ; 6(1): 422, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061616

RESUMEN

Reduced reward interest/learning and reward-to-effort valuation are distinct, common symptoms in neuropsychiatric disorders for which chronic stress is a major aetiological factor. Glutamate neurons in basal amygdala (BA) project to various regions including nucleus accumbens (NAc). The BA-NAc neural pathway is activated by reward and aversion, with many neurons being monovalent. In adult male mice, chronic social stress (CSS) leads to reduced discriminative reward learning (DRL) associated with decreased BA-NAc activity, and to reduced reward-to-effort valuation (REV) associated, in contrast, with increased BA-NAc activity. Chronic tetanus toxin BA-NAc inhibition replicates the CSS-DRL effect and causes a mild REV reduction, whilst chronic DREADDs BA-NAc activation replicates the CSS effect on REV without affecting DRL. This study provides evidence that stress disruption of reward processing involves the BA-NAc neural pathway; the bi-directional effects implicate opposite activity changes in reward (learning) neurons and aversion (effort) neurons in the BA-NAc pathway following chronic stress.


Asunto(s)
Complejo Nuclear Basolateral , Núcleo Accumbens , Ratones , Masculino , Animales , Amígdala del Cerebelo/fisiología , Neuronas/fisiología , Recompensa
19.
Biol Psychiatry ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36738982

RESUMEN

BACKGROUND: Tourette syndrome (TS) is a childhood-onset neurodevelopmental disorder of complex genetic architecture and is characterized by multiple motor tics and at least one vocal tic persisting for more than 1 year. METHODS: We performed a genome-wide meta-analysis integrating a novel TS cohort with previously published data, resulting in a sample size of 6133 individuals with TS and 13,565 ancestry-matched control participants. RESULTS: We identified a genome-wide significant locus on chromosome 5q15. Integration of expression quantitative trait locus, Hi-C (high-throughput chromosome conformation capture), and genome-wide association study data implicated the NR2F1 gene and associated long noncoding RNAs within the 5q15 locus. Heritability partitioning identified statistically significant enrichment in brain tissue histone marks, while polygenic risk scoring of brain volume data identified statistically significant associations with right and left thalamus volumes and right putamen volume. CONCLUSIONS: Our work presents novel insights into the neurobiology of TS, thereby opening up new directions for future studies.

20.
Transl Psychiatry ; 13(1): 69, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823209

RESUMEN

Tourette Syndrome (TS) is a complex neurodevelopmental disorder characterized by vocal and motor tics lasting more than a year. It is highly polygenic in nature with both rare and common previously associated variants. Epidemiological studies have shown TS to be correlated with other phenotypes, but large-scale phenome wide analyses in biobank level data have not been performed to date. In this study, we used the summary statistics from the latest meta-analysis of TS to calculate the polygenic risk score (PRS) of individuals in the UK Biobank data and applied a Phenome Wide Association Study (PheWAS) approach to determine the association of disease risk with a wide range of phenotypes. A total of 57 traits were found to be significantly associated with TS polygenic risk, including multiple psychosocial factors and mental health conditions such as anxiety disorder and depression. Additional associations were observed with complex non-psychiatric disorders such as Type 2 diabetes, heart palpitations, and respiratory conditions. Cross-disorder comparisons of phenotypic associations with genetic risk for other childhood-onset disorders (e.g.: attention deficit hyperactivity disorder [ADHD], autism spectrum disorder [ASD], and obsessive-compulsive disorder [OCD]) indicated an overlap in associations between TS and these disorders. ADHD and ASD had a similar direction of effect with TS while OCD had an opposite direction of effect for all traits except mental health factors. Sex-specific PheWAS analysis identified differences in the associations with TS genetic risk between males and females. Type 2 diabetes and heart palpitations were significantly associated with TS risk in males but not in females, whereas diseases of the respiratory system were associated with TS risk in females but not in males. This analysis provides further evidence of shared genetic and phenotypic architecture of different complex disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Diabetes Mellitus Tipo 2 , Síndrome de Tourette , Masculino , Femenino , Humanos , Síndrome de Tourette/genética , Trastorno del Espectro Autista/genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA