Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Hepatology ; 56(4): 1300-10, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22531947

RESUMEN

UNLABELLED: Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. We tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end, stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. CONCLUSION: The data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease.


Asunto(s)
Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Ácido Litocólico/farmacología , Ácido Ursodesoxicólico/farmacología , Animales , Ácidos y Sales Biliares/metabolismo , Células Cultivadas , Ácido Desoxicólico/metabolismo , Ácido Desoxicólico/farmacología , Modelos Animales de Enfermedad , Proteínas de Transporte de Ácidos Grasos/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inyecciones Subcutáneas , Metabolismo de los Lípidos/efectos de los fármacos , Ácido Litocólico/metabolismo , Ratones , Ratones Endogámicos , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Ácido Ursodesoxicólico/metabolismo
2.
Cancer Res ; 73(9): 2850-62, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23440422

RESUMEN

The sterol regulatory element-binding proteins (SREBP) are key transcriptional regulators of lipid metabolism and cellular growth. It has been proposed that SREBP signaling regulates cellular growth through its ability to drive lipid biosynthesis. Unexpectedly, we find that loss of SREBP activity inhibits cancer cell growth and viability by uncoupling fatty acid synthesis from desaturation. Integrated lipid profiling and metabolic flux analysis revealed that cancer cells with attenuated SREBP activity maintain long-chain saturated fatty acid synthesis, while losing fatty acid desaturation capacity. We traced this defect to the uncoupling of fatty acid synthase activity from stearoyl-CoA desaturase 1 (SCD1)-mediated desaturation. This deficiency in desaturation drives an imbalance between the saturated and monounsaturated fatty acid pools resulting in severe lipotoxicity. Importantly, replenishing the monounsaturated fatty acid pool restored growth to SREBP-inhibited cells. These studies highlight the importance of fatty acid desaturation in cancer growth and provide a novel mechanistic explanation for the role of SREBPs in cancer metabolism.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Ácido Graso Sintasas/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Modelos Estadísticos , Trasplante de Neoplasias , Transducción de Señal , Estearoil-CoA Desaturasa/metabolismo , Esteroles/metabolismo
3.
ACS Chem Biol ; 7(11): 1884-91, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22928772

RESUMEN

Detection and quantification of fatty acid fluxes in animal model systems following physiological, pathological, or pharmacological challenges is key to our understanding of complex metabolic networks as these macronutrients also activate transcription factors and modulate signaling cascades including insulin sensitivity. To enable noninvasive, real-time, spatiotemporal quantitative imaging of fatty acid fluxes in animals, we created a bioactivatable molecular imaging probe based on long-chain fatty acids conjugated to a reporter molecule (luciferin). We show that this probe faithfully recapitulates cellular fatty acid uptake and can be used in animal systems as a valuable tool to localize and quantitate in real time lipid fluxes such as intestinal fatty acid absorption and brown adipose tissue activation. This imaging approach should further our understanding of basic metabolic processes and pathological alterations in multiple disease models.


Asunto(s)
Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Imagen Molecular/métodos , Sondas Moleculares/análisis , Células 3T3-L1 , Animales , Transporte Biológico , Expresión Génica , Insulina/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes/métodos , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA