Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Oncol ; 42(4): 452-466, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055913

RESUMEN

PURPOSE: Primary mediastinal large B-cell lymphoma (PMBCL) is a rare aggressive lymphoma predominantly affecting young female patients. Large-scale genomic investigations and genetic markers for risk stratification are lacking. PATIENTS AND METHODS: To elucidate the full spectrum of genomic alterations, samples from 340 patients with previously untreated PMBCL were investigated by whole-genome (n = 20), whole-exome (n = 78), and targeted (n = 308) sequencing. Statistically significant prognostic variables were identified using a multivariable Cox regression model and confirmed by L1/L2 regularized regressions. RESULTS: Whole-genome sequencing revealed a commonly disrupted p53 pathway with nonredundant somatic structural variations (SVs) in TP53-related genes (TP63, TP73, and WWOX) and identified novel SVs facilitating immune evasion (DOCK8 and CD83). Integration of mutation and copy-number data expanded the repertoire of known PMBCL alterations (eg, ARID1A, P2RY8, and PLXNC1) with a previously unrecognized role for epigenetic/chromatin modifiers. Multivariable analysis identified six genetic lesions with significant prognostic impact. CD58 mutations (31%) showed the strongest association with worse PFS (hazard ratio [HR], 2.52 [95% CI, 1.50 to 4.21]; P < .001) and overall survival (HR, 2.33 [95% CI, 1.14 to 4.76]; P = .02). IPI high-risk patients with mutated CD58 demonstrated a particularly poor prognosis, with 5-year PFS and OS rates of 41% and 58%, respectively. The adverse prognostic significance of the CD58 mutation status was predominantly observed in patients treated with nonintensified regimens, indicating that dose intensification may, to some extent, mitigate the impact of this high-risk marker. By contrast, DUSP2-mutated patients (24%) displayed durable responses (PFS: HR, 0.2 [95% CI, 0.07 to 0.55]; P = .002) and prolonged OS (HR, 0.11 [95% CI, 0.01 to 0.78]; P = .028). Upon CHOP-like treatment, these patients had very favorable outcome, with 5-year PFS and OS rates of 93% and 98%, respectively. CONCLUSION: This large-scale genomic characterization of PMBCL identified novel treatment targets and genetic lesions for refined risk stratification. DUSP2 and CD58 mutation analyses may guide treatment decisions between rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone and dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Femenino , Rituximab/uso terapéutico , Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Prednisona/uso terapéutico , Vincristina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Resultado del Tratamiento , Factores de Intercambio de Guanina Nucleótido/uso terapéutico
2.
Leukemia ; 37(11): 2237-2249, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37648814

RESUMEN

Recent exome-wide studies discovered frequent somatic mutations in the epigenetic modifier ZNF217 in primary mediastinal B cell lymphoma (PMBCL) and related disorders. As functional consequences of ZNF217 alterations remain unknown, we comprehensively evaluated their impact in PMBCL. Targeted sequencing identified genetic lesions affecting ZNF217 in 33% of 157 PMBCL patients. Subsequent gene expression profiling (n = 120) revealed changes in cytokine and interferon signal transduction in ZNF217-aberrant PMBCL cases. In vitro, knockout of ZNF217 led to changes in chromatin accessibility interfering with binding motifs for crucial lymphoma-associated transcription factors. This led to disturbed expression of interferon-responsive and inflammation-associated genes, altered cell behavior, and aberrant differentiation. Mass spectrometry demonstrates that ZNF217 acts within a histone modifier complex containing LSD1, CoREST and HDAC and interferes with H3K4 methylation and H3K27 acetylation. Concluding, our data suggest non-catalytic activity of ZNF217, which directs histone modifier complex function and controls B cell differentiation-associated patterns of chromatin structure.


Asunto(s)
Histonas , Linfoma de Células B , Humanos , Histonas/metabolismo , Transactivadores/metabolismo , Interferones/genética , Línea Celular Tumoral , Mutación , Transducción de Señal/genética , Cromatina/genética , Linfoma de Células B/genética
3.
Leukemia ; 36(4): 1102-1110, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34782715

RESUMEN

To investigate clonal hematopoiesis associated gene mutations in vitro and to unravel the direct impact on the human stem and progenitor cell (HSPC) compartment, we targeted healthy, young hematopoietic progenitor cells, derived from umbilical cord blood samples, with CRISPR/Cas9 technology. Site-specific mutations were introduced in defined regions of DNMT3A, TET2, and ASXL1 in CD34+ progenitor cells that were subsequently analyzed in short-term as well as long-term in vitro culture assays to assess self-renewal and differentiation capacities. Colony-forming unit (CFU) assays revealed enhanced self-renewal of TET2 mutated (TET2mut) cells, whereas ASXL1mut as well as DNMT3Amut cells did not reveal significant changes in short-term culture. Strikingly, enhanced colony formation could be detected in long-term culture experiments in all mutants, indicating increased self-renewal capacities. While we could also demonstrate preferential clonal expansion of distinct cell clones for all mutants, the clonal composition after long-term culture revealed a mutation-specific impact on HSPCs. Thus, by using primary umbilical cord blood cells, we were able to investigate epigenetic driver mutations without confounding factors like age or a complex mutational landscape, and our findings provide evidence for a direct impact of clonal hematopoiesis-associated mutations on self-renewal and clonal composition of human stem and progenitor cells.


Asunto(s)
Sistemas CRISPR-Cas , Sangre Fetal , Hematopoyesis Clonal , Hematopoyesis/genética , Células Madre Hematopoyéticas , Humanos
4.
Nat Commun ; 11(1): 73, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911629

RESUMEN

Cancer development is an evolutionary genomic process with parallels to Darwinian selection. It requires acquisition of multiple somatic mutations that collectively cause a malignant phenotype and continuous clonal evolution is often linked to tumor progression. Here, we show the clonal evolution structure in 15 myelofibrosis (MF) patients while receiving treatment with JAK inhibitors (mean follow-up 3.9 years). Whole-exome sequencing at multiple time points reveal acquisition of somatic mutations and copy number aberrations over time. While JAK inhibition therapy does not seem to create a clear evolutionary bottleneck, we observe a more complex clonal architecture over time, and appearance of unrelated clones. Disease progression associates with increased genetic heterogeneity and gain of RAS/RTK pathway mutations. Clonal diversity results in clone-specific expansion within different myeloid cell lineages. Single-cell genotyping of circulating CD34 + progenitor cells allows the reconstruction of MF phylogeny demonstrating loss of heterozygosity and parallel evolution as recurrent events.


Asunto(s)
Evolución Clonal , Mielofibrosis Primaria/genética , Anciano , Exoma , Femenino , Estudios de Seguimiento , Heterogeneidad Genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteína Oncogénica p21(ras)/genética , Estudios Prospectivos , Análisis de la Célula Individual , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA