Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 56(41): 5496-5502, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28949132

RESUMEN

B12-dependent proteins are involved in methyl transfer reactions ranging from the biosynthesis of methionine in humans to the formation of acetyl-CoA in anaerobic bacteria. During their catalytic cycle, they undergo large conformational changes to interact with various proteins. Recently, the crystal structure of the B12-containing corrinoid iron-sulfur protein (CoFeSP) in complex with its reductive activator (RACo) was determined, providing a first glimpse of how energy is transduced in the ATP-dependent reductive activation of corrinoid-containing methyltransferases. The thermodynamically uphill electron transfer from RACo to CoFeSP is accompanied by large movements of the cofactor-binding domains of CoFeSP. To refine the structure-based mechanism, we analyzed the conformational change of the B12-binding domain of CoFeSP by pulsed electron-electron double resonance and Förster resonance energy transfer spectroscopy. We show that the site-specific labels on the flexible B12-binding domain and the small subunit of CoFeSP move within 11 Å in the RACo:CoFeSP complex, consistent with the recent crystal structures. By analyzing the transient kinetics of formation and dissociation of the RACo:CoFeSP complex, we determined values of 0.75 µM-1 s-1 and 0.33 s-1 for rate constants kon and koff, respectively. Our results indicate that the large movement observed in crystals also occurs in solution and that neither the formation of the protein encounter complex nor the large movement of the B12-binding domain is rate-limiting for the ATP-dependent reductive activation of CoFeSP by RACo.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Activadores de Enzimas/metabolismo , Firmicutes/enzimología , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Vitamina B 12/metabolismo , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Coenzimas/química , Cristalografía por Rayos X , Bases de Datos de Proteínas , Dimerización , Activadores de Enzimas/química , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Cinética , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidad , Vitamina B 12/química
2.
Proc Natl Acad Sci U S A ; 109(14): 5235-40, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22431597

RESUMEN

Movement, cell division, protein biosynthesis, electron transfer against an electrochemical gradient, and many more processes depend on energy conversions coupled to the hydrolysis of ATP. The reduction of metal sites with low reduction potentials (E(0') < -500 mV) is possible by connecting an energetical uphill electron transfer with the hydrolysis of ATP. The corrinoid-iron/sulfur protein (CoFeSP) operates within the reductive acetyl-CoA pathway by transferring a methyl group from methyltetrahydrofolate bound to a methyltransferase to the [Ni-Ni-Fe(4)S(4)] cluster of acetyl-CoA synthase. Methylation of CoFeSP only occurs in the low-potential Co(I) state, which can be sporadically oxidized to the inactive Co(II) state, making its reductive reactivation necessary. Here we show that an open-reading frame proximal to the structural genes of CoFeSP encodes an ATP-dependent reductive activator of CoFeSP. Our biochemical and structural analysis uncovers a unique type of reductive activator distinct from the electron-transferring ATPases found to reduce the MoFe-nitrogenase and 2-hydroxyacyl-CoA dehydratases. The CoFeSP activator contains an ASKHA domain (acetate and sugar kinases, Hsp70, and actin) harboring the ATP-binding site, which is also present in the activator of 2-hydroxyacyl-CoA dehydratases and a ferredoxin-like [2Fe-2S] cluster domain acting as electron donor. Complex formation between CoFeSP and its activator depends on the oxidation state of CoFeSP, which provides evidence for a unique strategy to achieve unidirectional electron transfer between two redox proteins.


Asunto(s)
Adenosina Trifosfato/metabolismo , Corrinoides/metabolismo , Proteínas Hierro-Azufre/metabolismo , Adenosina Trifosfatasas/metabolismo , Corrinoides/química , Dimerización , Proteínas Hierro-Azufre/química , Modelos Moleculares , Oxidación-Reducción , Espectrofotometría Ultravioleta
3.
Biochemistry ; 51(36): 7040-2, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22924695

RESUMEN

Activation of the corrinoid [Fe-S] protein (CoFeSP), involved in reductive CO(2) conversion, requires the reduction of the Co(II) center by the [Fe-S] protein RACo, which according to the reduction potentials of the two proteins would correspond to an uphill electron transfer. In our resonance Raman spectroscopic work, we demonstrate that, as a conformational gate for the corrinoid reduction, complex formation of Co(II)FeSP and RACo specifically alters the structure of the corrinoid cofactor by modifying the interactions of the Co(II) center with the axial ligand. On the basis of various deletion mutants, the potential interaction domains on the partner proteins can be predicted.


Asunto(s)
Corrinoides/química , Corrinoides/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Unión Proteica , Espectrometría Raman
4.
PLoS One ; 11(7): e0158681, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27384529

RESUMEN

A cobalamin (Cbl) cofactor in corrinoid iron-sulfur protein (CoFeSP) is the primary methyl group donor and acceptor in biological carbon oxide conversion along the reductive acetyl-CoA pathway. Changes of the axial coordination of the cobalt ion within the corrin macrocycle upon redox transitions in aqua-, methyl-, and cyano-Cbl bound to CoFeSP or in solution were studied using X-ray absorption spectroscopy (XAS) at the Co K-edge in combination with density functional theory (DFT) calculations, supported by metal content and cobalt redox level quantification with further spectroscopic methods. Calculation of the highly variable pre-edge X-ray absorption features due to core-to-valence (ctv) electronic transitions, XANES shape analysis, and cobalt-ligand bond lengths determination from EXAFS has yielded models for the molecular and electronic structures of the cobalt sites. This suggested the absence of a ligand at cobalt in CoFeSP in α-position where the dimethylbenzimidazole (dmb) base of the cofactor is bound in Cbl in solution. As main species, (dmb)CoIII(OH2), (dmb)CoII(OH2), and (dmb)CoIII(CH3) sites for solution Cbl and CoIII(OH2), CoII(OH2), and CoIII(CH3) sites in CoFeSP-Cbl were identified. Our data support binding of a serine residue from the reductive-activator protein (RACo) of CoFeSP to the cobalt ion in the CoFeSP-RACo protein complex that stabilizes Co(II). The absence of an α-ligand at cobalt not only tunes the redox potential of the cobalamin cofactor into the physiological range, but is also important for CoFeSP reactivation.


Asunto(s)
Proteínas Bacterianas/química , Cobalto/química , Corrinoides/química , Proteínas Hierro-Azufre/química , Vitamina B 12/química , Espectroscopía de Absorción de Rayos X/métodos , Proteínas Bacterianas/metabolismo , Fenómenos Químicos , Cobalto/metabolismo , Corrinoides/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Firmicutes/metabolismo , Iones/química , Iones/metabolismo , Proteínas Hierro-Azufre/metabolismo , Ligandos , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Soluciones , Vitamina B 12/metabolismo
5.
Structure ; 24(2): 285-92, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26749450

RESUMEN

A novel group of bacterial [NiFe]-hydrogenases is responsible for high-affinity H2 uptake from the troposphere, and is therefore thought to play an important role in the global H2 cycle. Here we present the first crystal structure at 2.85-Å resolution of such an actinobacterial-type hydrogenase (AH), which was isolated from the dihydrogen oxidizing bacterium, Ralstonia eutropha. The enzyme has a dimeric structure carrying two active [NiFe] sites that are interconnected by six [4Fe4S] clusters over a range of approximately 90 Å. Unlike most other [NiFe]-hydrogenases, the [4Fe4S] cluster proximal to the [NiFe] site is coordinated by three cysteines and one aspartate. Mutagenesis experiments revealed that this aspartate residue is related to the apparent O2 insensitivity of the AH. Our data provide first structural insight into specialized hydrogenases that are supposed to consume atmospheric H2 under challenging conditions, i.e. at high O2 concentration and wide temperature and pH ranges.


Asunto(s)
Cupriavidus necator/crecimiento & desarrollo , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/metabolismo , Oxígeno/metabolismo , Ácido Aspártico/metabolismo , Atmósfera/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cupriavidus necator/química , Cupriavidus necator/metabolismo , Hidrogenasas/genética , Modelos Moleculares , Oxidación-Reducción , Multimerización de Proteína
6.
Nat Commun ; 5: 4626, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25109607

RESUMEN

Thermodynamically unfavourable electron transfers are enabled by coupling to an energy-supplying reaction. How the energy is transduced from the exergonic to the endergonic process is largely unknown. Here we provide the structural basis for an energy transduction process in the reductive activation of B12-dependent methyltransferases. The transfer of one electron from an activating enzyme to the cobalamin cofactor is energetically uphill and relies on coupling to an ATPase reaction. Our results demonstrate that the key to coupling is, besides the oxidation state-dependent complex formation, the conformational gating of the electron transfer. Complex formation induces a substitution of the ligand at the electron-accepting Co ion. Addition of ATP initiates electron transfer by provoking conformational changes that destabilize the complex. We show how remodelling of the electron-accepting Co(2+) promotes ATP-dependent electron transfer; an efficient strategy not seen in other electron-transferring ATPases.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Oxidación-Reducción , Vitamina B 12/química , Sitios de Unión , Calorimetría , Respiración de la Célula , Cromatografía , Cristalización , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Electrones , Iones , Ligandos , Modelos Moleculares , Nucleótidos/química , Oxígeno/química , Estructura Terciaria de Proteína , Espectrofotometría , Thermoanaerobacter/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA