Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 141(20): 204503, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25429950

RESUMEN

Primary alcohols show a prominent Debye process in the dielectric relaxation located at a timescale longer than the main structural relaxation. Böhmer and co-workers studied dilution effects of the hydrogen bonding network of n-butanol (BuOH) with n-bromobutane (BuBr) to better understand the origin of this process. Interestingly, this work has evidenced a crossover in Debye relaxation time (τD) for a critical concentration in BuBr xc = 0.5. By using molecular dynamics simulations and NMR experiments we propose here to explore further dilution effects on the dipolar and translational dynamics. Moreover, we discuss the relation between structural and dynamical properties in the context of a detailed study of the microstructure and the H-bond network. The overall results are consistent with the existence of a topological change in the liquid structure occurring at about xc = 0.5 from a hypernetted percolating network to independent nanodomains of n-butanol molecules embedded in the n-bromobutane phase.

2.
J Chem Phys ; 134(7): 074104, 2011 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21341825

RESUMEN

Commonly, the confinement effects are studied from the grand canonical Monte Carlo (GCMC) simulations from the computation of the density of liquid in the confined phase. The GCMC modeling and chemical potential (µ) calculations are based on the insertion/deletion of the real and ghost particle, respectively. At high density, i.e., at high pressure or low temperature, the insertions fail from the Widom insertions while the performing methods as expanded method or perturbation approach are not efficient to treat the large and complex molecules. To overcome this problem we use a simple and efficient method to compute the liquid's density in the confined medium. This method does not require the precalculation of µ and is an alternative to the GCMC simulations. From the isothermal-isosurface-isobaric statistical ensemble we consider the explicit framework/liquid external interface to model an explicit liquid's reservoir. In this procedure only the liquid molecules undergo the volume changes while the volume of the framework is kept constant. Therefore, this method is described in the Np(n)AV(f)T statistical ensemble, where N is the number of particles, p(n) is the normal pressure, V(f) is the volume of framework, A is the surface of the solid/fluid interface, and T is the temperature. This approach is applied and validated from the computation of the density of the methanol and water confined in the mesoporous cylindrical silica nanopores and the MIL-53(Cr) metal organic framework type, respectively.

3.
ACS Appl Mater Interfaces ; 5(2): 338-43, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23273214

RESUMEN

The deposition of gold and platinum nanoparticles (NPs) on hydrogen-terminated Si(100) (Si(100)-H) surfaces has been performed by galvanic displacement using fluoride-free sub-millimolar metallic salt solutions. The scanning electron microscopy (SEM) images showed the formation of oblate hemispherical NPs, with an average diameter of ca. 40 nm and an average height of 20 ± 10 and 10 ± 5 nm for Au and Pt, respectively. Furthermore, the calculated number density was (6.0 ± 0.8) × 10(9) Au NPs cm(-2) and (6.6 ± 1.3) × 10(9) Pt NPs cm(-2) with a larger size distribution measured for Au NPs. The Au 4f and Pt 4f X-ray photoelectron spectra of the metallized surfaces were characterized by a principal component corresponding to either the metallic gold or platinum. However, two other components located at higher binding energies were also visible and ascribed to gold or platinum silicides. Using this fluoride-free deposition process and a "reagentless" UV photolithography technique, we have also demonstrated that it was possible to prepare metallic NP micropatterns. Following this approach, single metal (Au) and two metals (Au and Pt) patterns have been produced and characterized by energy-dispersive X-ray spectroscopy (EDS) which revealed the presence of the expected metal(s). Such metallic NP micropatterned surfaces were used as photocathodes for H(2) evolution from water as a proof-of-concept experiment. These electrodes exhibited much higher electrocatalytic performance than that of nonmetallized Si(100)-H, both in the absence of light and under illumination. The overpotential for hydrogen evolution was significantly decreased by ca. 450 mV with respect to Si(100)-H (measured for a current density of 0.1 mA cm(-2)) under identical illumination conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA