Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(5): 1659-1673, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38351869

RESUMEN

Monoclonal antibodies (MAbs) are powerful therapeutic tools in modern medicine and represent a rapidly expanding multibillion USD market. While bioprocesses are generally well understood and optimized for MAbs, online quality control remains challenging. Notably, N-glycosylation is a critical quality attribute of MAbs as it affects binding to Fcγ receptors (FcγRs), impacting the efficacy and safety of MAbs. Traditional N-glycosylation characterization methods are ill-suited for online monitoring of a bioreactor; in contrast, surface plasmon resonance (SPR) represents a promising avenue, as SPR biosensors can record MAb-FcγR interactions in real-time and without labeling. In this study, we produced five lots of differentially glycosylated Trastuzumab (TZM) and finely characterized their glycosylation profile by HILIC-UPLC chromatography. We then compared the interaction kinetics of these MAb lots with four FcγRs including FcγRIIA and FcγRIIB at 5°C and 25°C. When interacting with FcγRIIA/B at low temperature, the differentially glycosylated MAb lots exhibited distinct kinetic behaviors, contrary to room-temperature experiments. Galactosylated TZM (1) and core fucosylated TZM (2) could be discriminated and even quantified using an analytical technique based on the area under the curve of the signal recorded during the dissociation phase of a SPR sensorgram describing the interaction with FcγRIIA (1) or FcγRII2B (2). Because of the rapidity of the proposed method (<5 min per measurement) and the small sample concentration it requires (as low as 30 nM, exact concentration not required), it could be a valuable process analytical technology for MAb glycosylation monitoring.


Asunto(s)
Anticuerpos Monoclonales , Receptores de IgG , Anticuerpos Monoclonales/química , Receptores de IgG/metabolismo , Resonancia por Plasmón de Superficie , Glicosilación , Temperatura , Trastuzumab
2.
Appl Microbiol Biotechnol ; 108(1): 307, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656587

RESUMEN

Surface plasmon resonance (SPR)-based biosensors have emerged as a powerful platform for bioprocess monitoring due to their ability to detect biointeractions in real time, without the need for labeling. Paramount for the development of a robust detection platform is the immobilization of a ligand with high specificity and affinity for the in-solution species of interest. Following the 2009 H1N1 pandemic, much effort has been made toward the development of quality control platforms for influenza A vaccine productions, many of which have employed SPR for detection. Due to the rapid antigenic drift of influenza's principal surface protein, hemagglutinin, antibodies used for immunoassays need to be produced seasonally. The production of these antibodies represents a 6-8-week delay in immunoassay and, thus, vaccine availability. This review focuses on SPR-based assays that do not rely on anti-HA antibodies for the detection, characterization, and quantification of influenza A in bioproductions and biological samples. KEY POINTS: • The single radial immunodiffusion assay (SRID) has been the gold standard for the quantification of influenza vaccines since 1979. Due to antigenic drift of influenza's hemagglutinin protein, new antibody reagents for the SRID assay must be produced each year, requiring 6-8 weeks. The resulting delay in immunoassay availability is a major bottleneck in the influenza vaccine pipeline. This review highlights ligand options for the detection and quantification of influenza viruses using surface plasmon resonance biosensors.


Asunto(s)
Vacunas contra la Influenza , Control de Calidad , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , Vacunas contra la Influenza/inmunología , Humanos , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Gripe Humana/diagnóstico , Gripe Humana/prevención & control , Gripe Humana/inmunología , Inmunoensayo/métodos , Inmunoensayo/normas , Técnicas Biosensibles/métodos , Virus de la Influenza A/inmunología
3.
Langmuir ; 39(34): 12235-12247, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37581531

RESUMEN

We compared different biofunctionalization strategies for immobilizing trastuzumab, an IgG targeting the HER2 biomarker, onto 100 nm spherical gold nanoparticles because of the E/K coiled-coil peptide heterodimer. First, Kcoil peptides were grafted onto the gold surface while their Ecoil partners were genetically encoded at the C-terminus of trastuzumab's Fc region, allowing for a strong and specific interaction between the antibodies and the nanoparticles. Gold nanoparticles with no Kcoil peptides on their surface were also produced to immobilize Ecoil-tagged trastuzumab antibodies via the specific adsorption of their negatively charged Ecoil tags on the positively charged gold surface. Finally, the nonspecific adsorption of wild-type trastuzumab on the gold surface was also assessed, with and without Kcoil peptides grafted on it beforehand. We developed a thorough workflow to systematically compare the immobilization strategies regarding the stability of nanoparticles, antibody coverage, and ability to specifically bind to HER2-positive breast cancer cells. All nanoparticles were highly monodisperse and retained their localized surface plasmon resonance properties after biofunctionalization. A significant increase in the amount of immobilized antibodies was observed with the two oriented coil-based strategies compared to nonspecific adsorption. Finally, all biofunctionalization strategies allowed for the detection of HER2-positive breast cancer cells, but among the investigated approaches, we recommend using the E/K coiled-coil-based strategy for gold nanoparticle biofunctionalization because it allows for the qualitative and quantitative detection of HER2-positive cells with a higher contrast compared to HER2-negative cells.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Trastuzumab , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Oro/química , Nanopartículas del Metal/química , Péptidos/química , Trastuzumab/química
4.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205578

RESUMEN

Surface plasmon resonance (SPR)-based optical biosensors offer real-time and label-free analysis of protein interactions, which has extensively contributed to the discovery and development of therapeutic monoclonal antibodies (mAbs). As the biopharmaceutical market for these biologics and their biosimilars is rapidly growing, the role of SPR biosensors in drug discovery and quality assessment is becoming increasingly prominent. One of the critical quality attributes of mAbs is the N-glycosylation of their Fc region. Other than providing stability to the antibody, the Fc N-glycosylation influences immunoglobulin G (IgG) interactions with the Fcγ receptors (FcγRs), modulating the immune response. Over the past two decades, several studies have relied on SPR-based assays to characterize the influence of N-glycosylation upon the IgG-FcγR interactions. While these studies have unveiled key information, many conclusions are still debated in the literature. These discrepancies can be, in part, attributed to the design of the reported SPR-based assays as well as the methodology applied to SPR data analysis. In fact, the SPR biosensor best practices have evolved over the years, and several biases have been pointed out in the development of experimental SPR protocols. In parallel, newly developed algorithms and data analysis methods now allow taking into consideration complex biomolecular kinetics. In this review, we detail the use of different SPR biosensing approaches for characterizing the IgG-FcγR interactions, highlighting their merit and inherent experimental complexity. Furthermore, we review the latest SPR-derived conclusions on the influence of the N-glycosylation upon the IgG-FcγR interactions and underline the differences and similarities across the literature. Finally, we explore new avenues taking advantage of novel computational analysis of SPR results as well as the latest strategies to control the glycoprofile of mAbs during production, which could lead to a better understanding and modelling of the IgG-FcγRs interactions.


Asunto(s)
Inmunoglobulina G/metabolismo , Receptores de IgG/metabolismo , Resonancia por Plasmón de Superficie
5.
Bioprocess Biosyst Eng ; 42(5): 711-725, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30673843

RESUMEN

Mammalian-inducible expression systems are increasingly available and offer an attractive platform for the production of recombinant proteins. In this work, we have conducted process development for a cumate-inducible GS-CHO cell-line-expressing rituximab. To cope with the limitations encountered in batch when inducing at high cell densities, we have explored the use of fed-batch, sequential medium replacements, and continuous perfusion strategies applied during the pre-induction (growth) phase to enhance process performance in terms of product yield and quality. In shake flask, a fed-batch mode and a complete medium exchange at the time of induction were shown to significantly increase the integral of viable cell concentration and antibody titer compared to batch culture. Further enhancement of product yield was achieved by combining bolus concentrated feed additions with sequential medium replacement, but product galactosylation was reduced compared to fed-batch mode, as a result of the extended culture duration. In bioreactor, combining continuous perfusion of the basal medium with bolus daily feeding during the pre-induction period and harvesting earlier during the production phase is shown to provide a good trade-off between antibody titer and product galactosylation. Overall, our results demonstrate the importance of selecting a suitable operating mode and harvest time when carrying out high-cell-density induction to balance between culture productivity and product quality.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Rituximab/biosíntesis , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Rituximab/aislamiento & purificación
6.
Anal Chem ; 89(6): 3378-3385, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28211676

RESUMEN

Recent understandings in the development and spread of cancer have led to the realization of novel single cell analysis platforms focused on circulating tumor cells (CTCs). A simple, rapid, and inexpensive analytical platform capable of providing genetic information on these rare cells is highly desirable to support clinicians and researchers alike to either support the selection or adjustment of therapy or provide fundamental insights into cell function and cancer progression mechanisms. We report on the genetic profiling of single cancer cells, exploiting a combination of multiplex ligation-dependent probe amplification (MLPA) and electrochemical detection. Cells were isolated using laser capture and lysed, and the mRNA was extracted and transcribed into DNA. Seven markers were amplified by MLPA, which allows for the simultaneous amplification of multiple targets with a single primer pair, using MLPA probes containing unique barcode sequences. Capture probes complementary to each of these barcode sequences were immobilized on a printed circuit board (PCB) manufactured electrode array and exposed to single-stranded MLPA products and subsequently to a single stranded DNA reporter probe bearing a HRP molecule, followed by substrate addition and fast electrochemical pulse amperometric detection. We present a simple, rapid, flexible, and inexpensive approach for the simultaneous quantification of multiple breast cancer related mRNA markers, with single tumor cell sensitivity.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama/genética , Técnicas Electroquímicas , Células Neoplásicas Circulantes/patología , ARN Mensajero/genética , Análisis de la Célula Individual , Neoplasias de la Mama/patología , Femenino , Perfil Genético , Humanos
7.
Appl Microbiol Biotechnol ; 101(21): 7837-7851, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28924963

RESUMEN

Increasing recombinant protein production while ensuring a high and consistent protein quality remains a challenge in mammalian cell culture process development. In this work, we combined a nutrient substitution approach with a metabolic engineering strategy that improves glucose utilization efficiency. This combination allowed us to tackle both lactate and ammonia accumulation and investigate on potential synergistic effects on protein production and quality. To this end, HEK293 cells overexpressing the pyruvate yeast carboxylase (PYC2) and their parental cells, both stably producing the therapeutic glycoprotein interferon α2b (IFNα2b), were cultured in media deprived of glutamine but containing chosen substitutes. Among the tested substitutes, pyruvate led to the best improvement in growth (integral of viable cell density) for both cell lines in batch cultures, whereas the culture of PYC2 cells without neither glutamine nor any substitute displayed surprisingly enhanced IFNα2b production. The drastic reduction in both lactate and ammonia in the cultures translated into extended high viability conditions and an increase in recombinant protein titer by up to 47% for the parental cells and the PYC2 cells. Product characterization performed by surface plasmon resonance biosensing using Sambucus nigra (SNA) lectin revealed that the increase in yield was however accompanied by a reduction in the degree of sialylation of the product. Supplementing cultures with glycosylation precursors and a cofactor were effective at counterbalancing the lack of glutamine and allowed improvement in IFNα2b quality as evaluated by lectin affinity. Our study provides a strategy to reconcile protein productivity and quality and highlights the advantages of PYC2-overexpressing cells in glutamine-free conditions.


Asunto(s)
Interferón-alfa/aislamiento & purificación , Interferón-alfa/metabolismo , Ingeniería Metabólica/métodos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Amoníaco/metabolismo , Supervivencia Celular , Medios de Cultivo/química , Expresión Génica , Glucosa/metabolismo , Células HEK293 , Humanos , Interferón alfa-2 , Interferón-alfa/química , Interferón-alfa/genética , Lactatos/metabolismo , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Resonancia por Plasmón de Superficie
8.
Amino Acids ; 48(2): 567-77, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26459292

RESUMEN

A de novo heterodimeric coiled-coil system formed by the association of two synthetic peptides, the Ecoil and Kcoil, has been previously designed and proven to be an excellent and versatile tool for various biotechnology applications. However, based on the challenges encountered during its chemical synthesis, the Kcoil peptide has been designated as a "difficult peptide". In this study, we explore the expression of the Kcoil peptide by a bacterial system as well as its subsequent purification. The maximum expression level was observed when the peptide was fused to thioredoxin and the optimized purification process consisted of three chromatographic steps: immobilized-metal affinity chromatography followed by cation-exchange chromatography and, finally, a reverse-phase high-performance liquid chromatography. This entire process led to a final volumetric production yield of 1.5 mg of pure Kcoil peptide per liter of bacterial culture, which represents a significant step towards the cost-effective production and application of coiled-coil motifs. Our results thus demonstrate for the first time that bacterial production is a viable alternative to the chemical synthesis of de novo designed coil peptides.


Asunto(s)
Técnicas de Química Sintética/métodos , Escherichia coli/metabolismo , Biosíntesis de Péptidos/fisiología , Péptidos/metabolismo , Secuencias de Aminoácidos , Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Terciaria de Proteína , Tiorredoxinas/metabolismo
9.
BMC Biotechnol ; 15: 31, 2015 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-25981500

RESUMEN

BACKGROUND: Each year, influenza is responsible for hundreds of thousand cases of illness and deaths worldwide. Due to the virus' fast mutation rate, the World Health Organization (WHO) is constantly on alert to rapidly respond to emerging pandemic strains. Although anti-viral therapies exist, the most proficient way to stop the spread of disease is through vaccination. The majority of influenza vaccines on the market are produced in embryonic hen's eggs and are composed of purified viral antigens from inactivated whole virus. This manufacturing system, however, is limited in its production capacity. Cell culture produced vaccines have been proposed for their potential to overcome the problems associated with egg-based production. Virus-like particles (VLPs) of influenza virus are promising candidate vaccines under consideration by both academic and industry researchers. METHODS: In this study, VLPs were produced in HEK293 suspension cells using the Bacmam transduction system and Sf9 cells using the baculovirus infection system. The proposed systems were assessed for their ability to produce influenza VLPs composed of Hemagglutinin (HA), Neuraminidase (NA) and Matrix Protein (M1) and compared through the lens of bioprocessing by highlighting baseline production yields and bioactivity. VLPs from both systems were characterized using available influenza quantification techniques, such as single radial immunodiffusion assay (SRID), HA assay, western blot and negative staining transmission electron microscopy (NSTEM) to quantify total particles. RESULTS: For the HEK293 production system, VLPs were found to be associated with the cell pellet in addition to those released in the supernatant. Sf9 cells produced 35 times more VLPs than HEK293 cells. Sf9-VLPs had higher total HA activity and were generally more homogeneous in morphology and size. However, Sf9 VLP samples contained 20 times more baculovirus than VLPs, whereas 293 VLPs were produced along with vesicles. CONCLUSIONS: This study highlights key production hurdles that must be overcome in both expression platforms, namely the presence of contaminants and the ensuing quantification challenges, and brings up the question of what truly constitutes an influenza VLP candidate vaccine.


Asunto(s)
Antígenos Virales/química , Antígenos Virales/metabolismo , Vacunas contra la Influenza/química , Vacunas contra la Influenza/metabolismo , Virión/química , Virión/metabolismo , Animales , Antígenos Virales/genética , Antígenos Virales/aislamiento & purificación , Células HEK293 , Humanos , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/aislamiento & purificación , Neuraminidasa/química , Neuraminidasa/genética , Neuraminidasa/aislamiento & purificación , Neuraminidasa/metabolismo , Células Sf9 , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/aislamiento & purificación , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación , Proteínas Virales/metabolismo , Virión/genética , Virión/aislamiento & purificación
10.
J Immunol ; 191(3): 1029-42, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23833237

RESUMEN

Most human γδ T cells express Vγ2Vδ2 TCRs and play important roles in microbial and tumor immunity. Vγ2Vδ2 T cells are stimulated by self- and foreign prenyl pyrophosphate intermediates in isoprenoid synthesis. However, little is known about the molecular basis for this stimulation. We find that a mAb specific for butyrophilin 3 (BTN3)/CD277 Ig superfamily proteins mimics prenyl pyrophosphates. The 20.1 mAb stimulated Vγ2Vδ2 T cell clones regardless of their functional phenotype or developmental origin and selectively expanded blood Vγ2Vδ2 T cells. The γδ TCR mediates 20.1 mAb stimulation because IL-2 is released by ß(-) Jurkat cells transfected with Vγ2Vδ2 TCRs. 20.1 stimulation was not due to isopentenyl pyrophosphate (IPP) accumulation because 20.1 treatment of APC did not increase IPP levels. In addition, stimulation was not inhibited by statin treatment, which blocks IPP production. Importantly, small interfering RNA knockdown of BTN3A1 abolished stimulation by IPP that could be restored by re-expression of BTN3A1 but not by BTN3A2 or BTN3A3. Rhesus monkey and baboon APC presented HMBPP and 20.1 to human Vγ2Vδ2 T cells despite amino acid differences in BTN3A1 that localize to its outer surface. This suggests that the conserved inner and/or top surfaces of BTN3A1 interact with its counterreceptor. Although no binding site exists on the BTN3A1 extracellular domains, a model of the intracellular B30.2 domain predicts a basic pocket on its binding surface. However, BTN3A1 did not preferentially bind a photoaffinity prenyl pyrophosphate. Thus, BTN3A1 is required for stimulation by prenyl pyrophosphates but does not bind the intermediates with high affinity.


Asunto(s)
Antígenos CD/inmunología , Antígenos CD/metabolismo , Hemiterpenos/inmunología , Compuestos Organofosforados/inmunología , Linfocitos T/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Antígenos CD/genética , Sitios de Unión de Anticuerpos , Butirofilinas , Línea Celular , Células HeLa , Humanos , Interleucina-2/metabolismo , Activación de Linfocitos , Macaca mulatta , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/inmunología , Datos de Secuencia Molecular , Papio , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Alineación de Secuencia , Linfocitos T/inmunología , Terpenos
11.
J Theor Biol ; 357: 112-22, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-24801859

RESUMEN

In this work, a kinetic-metabolic model previously developed for CHO cells is used to study glycolysis regulation. The model is assessed for its biological relevance by analyzing its ability to simulate metabolic events induced following a hypoxic perturbation. Feedback and feedforward regulatory mechanisms known to occur to either inhibit or activate fluxes of glycolysis, are implemented in various combined scenarios and their effects on the metabolic response were analyzed. This study aims at characterizing the role of intermediates of glycolysis and of the cell energetic state, described as the AMP-to-ATP ratio, as inhibitors and activators of glycolysis pathway. In addition to the glycolysis pathway, we here describe the transient metabolic response of pathways that are connected to glycolysis, such as the pentose phosphate pathway, TCA cycle, cell bioenergetics system, glutamine and amino acids metabolisms. Taken individually, each regulatory mechanism leads to an oscillatory behavior in response to a hypoxic perturbation, while their combination clearly damps oscillations. However, only the addition of the cell energetic state to the regulatory mechanisms results in a non-oscillating response leading to metabolic flux rate rearrangement corresponding to the anaerobic metabolism expected to prevail under hypoxic conditions. We thus demonstrate in this work, from model simulations, that the robustness of a cell energetic metabolism can be described from a combination of feedback and feedforward inhibition and activation regulatory mechanisms of glycolysis fluxes, involving intermediates of glycolysis and the cell energetic state itself.


Asunto(s)
Ciclo del Ácido Cítrico/fisiología , Simulación por Computador , Glucólisis/fisiología , Modelos Biológicos , Animales , Células CHO , Cricetinae , Cricetulus , Vía de Pentosa Fosfato/fisiología
12.
Anal Bioanal Chem ; 406(2): 515-24, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24247552

RESUMEN

Celiac disease is an immune-mediated enteropathy triggered by the ingestion of gluten. The only effective treatment consists in a lifelong gluten-free diet, requiring the food industry to tightly control the gluten contents of their products. To date, several gluten quantification approaches using antibodies are available and recommended by the legal authorities, such as Codex Alimentarius. However, whilst these antibody-based tests exhibit high sensitivity and specificity, the production of antibodies inherently requires the killing of host animals and is time-consuming and relatively expensive. Aptamers are structured single-stranded nucleic acid ligands that bind with high affinity and specificity to their cognate target, and aiming for a cost-effective viable alternative to the use of antibodies. Herein, we report the systematic evolution of ligands by exponential enrichment (SELEX)-based selection of a DNA aptamer against gliadin from a combinatorial DNA library and its application in a novel detection assay. Taking into account the hydrophobic nature of the gliadin target, a microtitre plate format was exploited for SELEX, where the target was immobilised via hydrophobic interactions, thus exposing aptatopes accessible for interaction with the DNA library. Evolution was followed using surface plasmon resonance, and following eight rounds of SELEX, the enriched DNA pool was cloned, sequenced and a clear consensus motif was identified. An apta-PCR assay was developed where competition for the aptamer takes place between the surface-immobilised gliadin and gliadin in the target sample, akin to an ELISA competitive format where the more target present in the sample, the less aptamer will bind to the immobilised gliadin. Following competition, any aptamer bound to the immobilised gliadin was heat-eluted and quantitatively amplified using real-time PCR, achieving a detection limit of approx. 2 nM (100 ng mL(-1)). The specificity of the selected aptamer was demonstrated and no cross-reactivity was observed with streptavidin, bovine serum albumin or anti-gliadin IgG.


Asunto(s)
Alérgenos/análisis , Aptámeros de Nucleótidos/química , Gliadina/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Bovinos , Clonación Molecular , Grano Comestible/química , Ensayo de Inmunoadsorción Enzimática , Biblioteca de Genes , Humanos , Inmunoglobulina G , Límite de Detección , Técnica SELEX de Producción de Aptámeros , Albúmina Sérica Bovina , Estreptavidina , Resonancia por Plasmón de Superficie
13.
Biotechnol Prog ; : e3506, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286892

RESUMEN

Vesicular stomatitis virus (VSV) has been increasingly demonstrated as a promising viral vector platform. As the interest over this modality for vaccine and gene therapy applications increases, the need for intensified processes to produce these vectors emerge. In this study, we develop fed-batch-based operations to intensify the production of a recombinant VSV-based vaccine candidate (rVSV-SARS-CoV-2) in suspension cultures of HEK293 cells. A feeding strategy, in which a commercial concentrated medium was added to cultures based on cell growth through a fixed cell specific feeding rate (CSFR), was applied for the development of two different processes using Ambr250 modular bioreactors. Cultures operated in hybrid fed-batch/perfusion (FB/P) or fed-batch (FB) were able to sustain infections performed at 8.0 × 106 cells/mL, respectively resulting in 3.9 and 5.0-fold increase in total yield (YT) and 1.7 and 5.6-fold increase in volumetric productivity (VP) when compared with a batch reference. A maximum viral titer of 4.5 × 1010 TCID50/mL was reached, which is comparable or higher than other processes for VSV production in different cell lines. Overall, our study reports efficient fed-batch options to intensify the production of a rVSV-based vaccine candidate in suspension HEK293 cells.

14.
Biotechnol Prog ; : e3507, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39329353

RESUMEN

Technology scale-up and transfer are a fundamental and critical part of process development in biomanufacturing. Important bioreactor hydrodynamic characteristics such as working volume, overhead gas flow rate, volumetric power input (P/V), impeller type, agitation regimen, sparging aeration strategy, sparger type, and kLa must be selected based on key performance indicators (KPI) to ensure a smooth and seamless process scale-up and transfer. Finding suitable operational setpoints and developing an efficient feeding regimen to ensure process efficacy and consistency are instrumental. In this investigation, process development of a cumate inducible Chinese hamster ovary (CHO) stable pool expressing trimeric SARS-CoV-2 spike protein in 1.8 L benchtop stirred-tank bioreactors is detailed. Various dissolved oxygen levels and aeration air caps were studied to determine their impact on cell growth and metabolism, culture longevity, and endpoint product titers. Once hydrodynamic conditions were tuned to an optimal zone, various feeding strategies were explored to increase culture performance. Dynamic feedings such as feeding based on current culture volume, viable cell density (VCD), oxygen uptake rate (OUR), and bio-capacitance signals were tested and compared to standard bolus addition. Increases in integral of viable cell concentration (IVCC) (1.25-fold) and protein yield (2.52-fold), as well as greater culture longevity (extension of 5 days) were observed in dynamic feeding strategies when compared to periodic bolus feeding. Our study emphasizes the benefits of designing feeding strategies around metabolically relevant signals such as OUR and bio-capacitance signals.

15.
Lab Chip ; 24(18): 4371-4378, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39148372

RESUMEN

Applications such as nucleic acid synthesis or next-generation sequencing involve repeated fluidic cycles with the same set of reagents. The large dead volumes present in external valves and pumps with relatively long supply lines mandate the inclusion of extensive rinsing steps in current protocols, resulting in the consumption of significant quantities of reagents. To allow for fast rinsing, to reduce reagent consumption, and to ensure high reagent purity, we propose a fluidic concept based on a hierarchical branching structure. The working principle comprises a 3D fluidic network of supply lines - one line per reagent - that ensures reagents to be provided up to the entrance of every single reaction cavity, called supercells. Because all reagents are always present inside or at the inlet of a supercell, the principle allows for very rapid reagent switching, while a continuous flow avoids cross contamination. Selection of a specific reagent to enter the supercells is controlled by adjusting the pressure over different supply lines. As the pressure is regulated by a single, external controller per reagent, no integrated valves are needed. The very small distances to the reaction cavities also results in the use of minimal reagent volumes and, hence, largely reduces operational costs. We demonstrated the working principle of this concept and show an average switching time of 0.23 ± 0.09 s for the current design at a flow rate of 10 nL s-1. We used a 10 × 10 matrix of supercells to validate the fluidic concept to be scalable towards a large number of reaction sites. In summary, we believe the presented fluidic 3D hierarchical concept allows designing flow cells that enable highly parallel, more cost-efficient, and faster work flows for applications requiring many reagent cycles.

16.
Methods Mol Biol ; 2762: 89-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315361

RESUMEN

Surface plasmon resonance (SPR)-based biosensing enables the characterization of protein-protein interactions. Several SPR-based approaches have been designed to evaluate the binding mechanism between the angiotensin-converting enzyme 2 (ACE2) receptor and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein leading to a large range of kinetic and thermodynamic constants. This chapter describes a robust SPR assay based on the K5/E5 coiled-coil capture strategy that reduces artifacts. In this method, ACE2 receptors were produced with an E5-tag and immobilized as ligands in the SPR assay. This chapter details methods for high-yield production and purification of the studied proteins, functionalization of the sensor chip, conduction of the SPR assay, and data analysis.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Técnicas Biosensibles/métodos , Unión Proteica
17.
Biotechnol Prog ; : e3467, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660973

RESUMEN

The recent COVID-19 pandemic revealed an urgent need to develop robust cell culture platforms which can react rapidly to respond to this kind of global health issue. Chinese hamster ovary (CHO) stable pools can be a vital alternative to quickly provide gram amounts of recombinant proteins required for early-phase clinical assays. In this study, we analyze early process development data of recombinant trimeric spike protein Cumate-inducible manufacturing platform utilizing CHO stable pool as a preferred production host across three different stirred-tank bioreactor scales (0.75, 1, and 10 L). The impact of cell passage number as an indicator of cell age, methionine sulfoximine (MSX) concentration as a selection pressure, and cell seeding density was investigated using stable pools expressing three variants of concern. Multivariate data analysis with principal component analysis and batch-wise unfolding technique was applied to evaluate the effect of critical process parameters on production variability and a random forest (RF) model was developed to forecast protein production. In order to further improve process understanding, the RF model was analyzed with Shapley value dependency plots so as to determine what ranges of variables were most associated with increased protein production. Increasing longevity, controlling lactate build-up, and altering pH deadband are considered promising approaches to improve overall culture outcomes. The results also demonstrated that these pools are in general stable expressing similar level of spike proteins up to cell passage 11 (~31 cell generations). This enables to expand enough cells required to seed large volume of 200-2000 L bioreactor.

18.
Virol J ; 10: 141, 2013 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-23642219

RESUMEN

Influenza virus-like particle vaccines are one of the most promising ways to respond to the threat of future influenza pandemics. VLPs are composed of viral antigens but lack nucleic acids making them non-infectious which limit the risk of recombination with wild-type strains. By taking advantage of the advancements in cell culture technologies, the process from strain identification to manufacturing has the potential to be completed rapidly and easily at large scales. After closely reviewing the current research done on influenza VLPs, it is evident that the development of quantification methods has been consistently overlooked. VLP quantification at all stages of the production process has been left to rely on current influenza quantification methods (i.e. Hemagglutination assay (HA), Single Radial Immunodiffusion assay (SRID), NA enzymatic activity assays, Western blot, Electron Microscopy). These are analytical methods developed decades ago for influenza virions and final bulk influenza vaccines. Although these methods are time-consuming and cumbersome they have been sufficient for the characterization of final purified material. Nevertheless, these analytical methods are impractical for in-line process monitoring because VLP concentration in crude samples generally falls out of the range of detection for these methods. This consequently impedes the development of robust influenza-VLP production and purification processes. Thus, development of functional process analytical techniques, applicable at every stage during production, that are compatible with different production platforms is in great need to assess, optimize and exploit the full potential of novel manufacturing platforms.


Asunto(s)
Antígenos Virales/análisis , Biotecnología/normas , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/aislamiento & purificación , Tecnología Farmacéutica/normas , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/aislamiento & purificación , Humanos , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/normas , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/normas
19.
Bioprocess Biosyst Eng ; 36(4): 469-87, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22976819

RESUMEN

A kinetic-metabolic model approach describing and simulating Chinese hamster ovary (CHO) cell behavior is presented. The model includes glycolysis, pentose phosphate pathway, TCA cycle, respiratory chain, redox state and energetic metabolism. Growth kinetic is defined as a function of the major precursors for the synthesis of cell building blocks. Michaelis-Menten type kinetic is used for metabolic intermediates as well as for regulatory functions from energy shuttles (ATP/ADP) and cofactors (NAD/H and NADP/H). Model structure and parameters were first calibrated using results from bioreactor cultures of CHO cells expressing recombinant t-PA. It is shown that the model can simulate experimental data for all available experimental data, such as extracellular glucose, glutamine, lactate and ammonium concentration time profiles, as well as cell energetic state. A sensitivity analysis allowed identifying the most sensitive parameters. The model was then shown to be readily adaptable for studying the effect of sodium butyrate on CHO cells metabolism, where it was applied to the cases with sodium butyrate addition either at mid-exponential growth phase (48 h) or at the early plateau phase (74 h). In both cases, a global optimization routine was used for the simultaneous estimation of the most sensitive parameters, while the insensitive parameters were considered as constants. Finally, confidence intervals for the estimated parameters were calculated. Results presented here further substantiate our previous findings that butyrate treatment at mid-exponential phase may cause a shift in cellular metabolism toward a sustained and increased efficiency of glucose utilization channeled through the TCA cycle.


Asunto(s)
Butiratos/farmacología , Células CHO/efectos de los fármacos , Células CHO/metabolismo , Modelos Biológicos , Animales , Bioingeniería , Reactores Biológicos , Ciclo del Ácido Cítrico/efectos de los fármacos , Cricetinae , Cricetulus , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Cinética , Redes y Vías Metabólicas/efectos de los fármacos
20.
Vaccines (Basel) ; 11(12)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38140223

RESUMEN

Major efforts in the intensification of cell culture-based viral vaccine manufacturing focus on the development of high-cell-density (HCD) processes, often operated in perfusion. While perfusion operations allow for higher viable cell densities and volumetric productivities, the high perfusion rates (PR) normally adopted-typically between 2 and 4 vessel volumes per day (VVD)-dramatically increase media consumption, resulting in a higher burden on the cell retention device and raising challenges for the handling and disposal of high volumes of media. In this study, we explore high inoculum fed-batch (HIFB) and low-PR perfusion operations to intensify a cell culture-based process for influenza virus production while minimizing media consumption. To reduce product retention time in the bioreactor, produced viral particles were continuously harvested using a tangential flow depth filtration (TFDF) system as a cell retention device and harvest unit. The feeding strategies developed-a hybrid fed-batch with continuous harvest and a low-PR perfusion-allowed for infections in the range of 8-10 × 106 cells/mL while maintaining cell-specific productivity comparable to the batch control, resulting in a global increase in the process productivity. Overall, our work demonstrates that feeding strategies that minimize media consumption are suitable for large-scale influenza vaccine production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA