Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
Más filtros

Intervalo de año de publicación
1.
Genome Res ; 32(2): 297-308, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34949669

RESUMEN

Polyploidy is widespread in plants, allowing the different copies of genes to be expressed differently in a tissue-specific or developmentally specific way. This allele-specific expression (ASE) has been widely reported, but the proportion and nature of genes showing this characteristic have not been well defined. We now report an analysis of the frequency and patterns of ASE at the whole-genome level in the highly polyploid sugarcane genome. Very high depth whole-genome sequencing and RNA sequencing revealed strong correlations between allelic proportions in the genome and in expressed sequences. This level of sequencing allowed discrimination of each of the possible allele doses in this 12-ploid genome. Most genes were expressed in direct proportion to the frequency of the allele in the genome with examples of polymorphisms being found with every possible discrete level of dose from 1:11 for single-copy alleles to 12:0 for monomorphic sites. The rarer cases of ASE were more frequent in the expression of defense-response genes, as well as in some processes related to the biosynthesis of cell walls. ASE was more common in genes with variants that resulted in significant disruption of function. The low level of ASE may reflect the recent origin of polyploid hybrid sugarcane. Much of the ASE present can be attributed to strong selection for resistance to diseases in both nature and domestication.


Asunto(s)
Saccharum , Alelos , Expresión Génica , Polimorfismo de Nucleótido Simple , Poliploidía , Saccharum/genética , Análisis de Secuencia de ARN
2.
BMC Plant Biol ; 24(1): 260, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594608

RESUMEN

BACKGROUND: The finger lime (Citrus australasica), one of six Australian endemic citrus species shows a high natural phenotypic diversity and novel characteristics. The wide variation and unique horticultural features have made this lime an attractive candidate for domestication. Currently no haplotype resolved genome is available for this species. Here we present a high quality, haplotype-resolved reference genome for this species using PacBio HiFi and Hi-C sequencing. RESULTS: Hifiasm assembly and SALSA scaffolding resulted in a collapsed genome size of 344.2 Mb and 321.1 Mb and 323.2 Mb size for the two haplotypes. The nine pseudochromosomes of the collapsed genome had an N50 of 35.2 Mb, 99.1% genome assembly completeness and 98.9% gene annotation completeness (BUSCO). A total of 41,304 genes were predicted in the nuclear genome. Comparison with C. australis revealed that 13,661 genes in pseudochromosomes were unique in C. australasica. These were mainly involved in plant-pathogen interactions, stress response, cellular metabolic and developmental processes, and signal transduction. The two genomes showed a syntenic arrangement at the chromosome level with large structural rearrangements in some chromosomes. Genetic variation among five C. australasica cultivars was analysed. Genes related to defense, synthesis of volatile compounds and red/yellow coloration were identified in the genome. A major expansion of genes encoding thylakoid curvature proteins was found in the C. australasica genome. CONCLUSIONS: The genome of C. australasica present in this study is of high quality and contiguity. This genome helps deepen our understanding of citrus evolution and reveals disease resistance and quality related genes with potential to accelerate the genetic improvement of citrus.


Asunto(s)
Compuestos de Calcio , Citrus , Citrus/genética , Resistencia a la Enfermedad/genética , Australia , Óxidos , Filogenia
3.
BMC Plant Biol ; 24(1): 861, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39272034

RESUMEN

BACKGROUND: Jasminum sambac, a widely recognized ornamental plant prized for its aromatic blossoms, exhibits three flora phenotypes: single-petal ("SP"), double-petal ("DP"), and multi-petal ("MP"). The lack of detailed characterization and comparison of J. sambac mitochondrial genomes (mitogenomes) hinders the exploration of the genetic and structural diversity underlying the varying floral phenotypes in jasmine accessions. RESULTS: Here, we de novo assembled three mitogenomes of typical phenotypes of J. sambac, "SP", "DP", and "MP-hutou" ("HT"), with PacBio reads and the "HT" chloroplast (cp) genome with Illumina reads, and verified them with read mapping and fluorescence in situ hybridization (FISH). The three mitogenomes present divergent sub-genomic conformations, with two, two, and four autonomous circular chromosomes ranging in size from 35.7 kb to 405.3 kb. Each mitogenome contained 58 unique genes. Ribosome binding sites with conserved AAGAAx/AxAAAG motifs were detected upstream of uncanonical start codons TTG, CTG and GTG. The three mitogenomes were similar in genomic content but divergent in structure. The structural variations were mainly attributed to recombination mediated by a large (~ 5 kb) forward repeat pair and several short repeats. The three jasmine cp. genomes showed a well-conserved structure, apart from a 19.9 kb inversion in "HT". We identified a 14.3 kb "HT"-specific insertion on Chr7 of the "HT" nuclear genome, consisting of two 7 kb chloroplast-derived fragments with two intact ndhH and rps15 genes, further validated by polymerase chain reaction (PCR). The well-resolved phylogeny suggests faster mitogenome evolution in J. sambac compared to other Oleaceae species and outlines the mitogenome evolutionary trajectories within Lamiales. All evidence supports that "DP" and "HT" evolved from "SP", with "HT" being the most recent derivative of "DP". CONCLUSION: The comprehensive characterization of jasmine organelle genomes has added to our knowledge of the structural diversity and evolutionary trajectories behind varying jasmine traits, paving the way for in-depth exploration of mechanisms and targeted genetic research.


Asunto(s)
Genoma Mitocondrial , Genoma de Planta , Jasminum , Jasminum/genética , Genoma del Cloroplasto , Cloroplastos/genética , Hibridación Fluorescente in Situ
4.
BMC Plant Biol ; 24(1): 331, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664619

RESUMEN

BACKGROUND: Jasmine (Jasminum), renowned for its ornamental value and captivating fragrance, has given rise to numerous species and accessions. However, limited knowledge exists regarding the evolutionary relationships among various Jasminum species. RESULTS: In the present study, we sequenced seven distinct Jasminum species, resulting in the assembly of twelve high-quality complete chloroplast (cp) genomes. Our findings revealed that the size of the 12 cp genomes ranged from 159 to 165 kb and encoded 134-135 genes, including 86-88 protein-coding genes, 38-40 tRNA genes, and 8 rRNA genes. J. nudiflorum exhibited a larger genome size compared to other species, mainly attributed to the elevated number of forward repeats (FRs). Despite the typically conservative nature of chloroplasts, variations in the presence or absence of accD have been observed within J. sambac. The calculation of nucleotide diversity (Pi) values for 19 cp genomes indicated that potential mutation hotspots were more likely to be located in LSC regions than in other regions, particularly in genes ycf2, rbcL, atpE, ndhK, and ndhC (Pi > 0.2). Ka/Ks values revealed strong selection pressure on the genes rps2, atpA, rpoA, rpoC1, and rpl33 when comparing J. sambac with the three most closely related species (J. auriculatum, J. multiflorum, and J. dichotomum). Additionally, SNP identification, along with the results of Structure, PCA, and phylogenetic tree analyses, divided the Jasminum cp genomes into six groups. Notably, J. polyanthum showed gene flow signals from both the G5 group (J. nudiflorum) and the G3 group (J. tortuosum and J. fluminense). Phylogenetic tree analysis reflected that most species from the same genus clustered together with robust support in Oleaceae, strongly supporting the monophyletic nature of cp genomes within the genus Jasminum. CONCLUSION: Overall, this study provides comprehensive insights into the genomic composition, variation, and phylogenetic relationships among various Jasminum species. These findings enhance our understanding of the genetic diversity and evolutionary history of Jasminum.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma del Cloroplasto , Jasminum , Filogenia , Jasminum/genética , Oleaceae/genética
5.
Plant Biotechnol J ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150344

RESUMEN

Germplasm resources serve as the foundations of advancements in breeding and are crucial for maintaining food security. Wild rice species of the genus Oryza include rich sources of genetic diversity and high adaptability, making them a substantial resource for rice breeding. The discovery of wild-type cytoplasmic male sterility resources enabled the achievement of the 'three lines' goal in hybrid rice, significantly increasing rice yields. The application of resistance alleles from wild rice enables rice production to withstand losses caused by stress. Reduced genetic diversity due to rice breeding poses a significant limitation to further advances and can be alleviated through a systematic use of wild genetic resources that integrate geographic, climatic and environmental data of the original habitat, along with extensive germplasm collection and identification using advanced methods. Leveraging technological advancements in plant genomics, the understanding of genetic mechanisms and the application of artificial intelligence and gene editing can further enhance the efficiency and accuracy of this process. These advancements facilitate rapid isolation and functional studies of genes, and precise genome manipulation. This review systematically summarizes the utilization of superior genes and germplasm resources derived from wild rice sources, while also exploring the collection, conservation, identification and utilization of further wild rice germplasm resources. A focus on genome sequencing and biotechnology developments is leading to new breeding and biotechnology opportunities. These new opportunities will not only promote the development of rice varieties that exhibit high yields, superior stress resistance and high quality but also expand the genetic diversity among rice cultivars.

6.
Physiol Plant ; 176(4): e14449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39164923

RESUMEN

Plant breeders leverage mutagenesis using chemical, biological, and physical mutagens to create novel trait variations. Many widely used sorghum genotypes have a narrow genetic base, which hinders improvements using classical breeding. Enhancing the diversity of the sorghum genome thus remains a key priority for sorghum breeders. To accelerate the genetic enhancement of sorghum, an extensive library comprised of seeds from 150,000 individual mutant plants of the Sorghum bicolor inbred line BTx623 was established using ethyl methanesulphonate (EMS) as a mutagen. The sorghum mutant library was bulked into 1498 pools (~100 seed heads per pool). In each pool, DNA was extracted from a subset of the seed and screened using the FIND-IT technology based on droplet digital PCR. All 43 nucleotide substitutions that were screened using FIND-IT were identified, demonstrating the potential to identify any EMS-derived mutation in an elite line of sorghum within days. This diverse library represents the largest collection of sorghum mutants ever conceived, estimated to cover 240% of all possible EMS-induced mutation points within the Sorghum genome. Using FIND-IT, the speed at which a specific desired EMS-derived mutation can be identified is a major upgrade to conventional reverse genetic techniques. Additionally, the ease at which valuable variants can be integrated into elite commercial lines is a far simpler and less expensive process compared to genome editing. Genomic variations in the library will have direct utility as a breeding resource for commercial sorghum applications, allowing enhanced adaptation to climate change and enhanced yield potential in marginal environments.


Asunto(s)
Metanosulfonato de Etilo , Mutagénesis , Fitomejoramiento , Sorghum , Sorghum/genética , Sorghum/efectos de los fármacos , Mutagénesis/genética , Fitomejoramiento/métodos , Mutación/genética , Genotipo , Productos Agrícolas/genética , Genoma de Planta/genética , Semillas/genética , Semillas/efectos de los fármacos , Mutágenos , Biblioteca de Genes
7.
BMC Pregnancy Childbirth ; 24(1): 603, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289636

RESUMEN

BACKGROUND: Newborns are shaped by prenatal maternal experiences. These include a pregnant person's physical health, prior pregnancy experiences, emotion regulation, and socially determined health markers. We used a series of machine learning models to predict markers of fetal growth and development-specifically, newborn birthweight and head circumference (HC). METHODS: We used a pre-registered archival data analytic approach. These data consisted of maternal and newborn characteristics of 594 maternal-infant dyads in the western U.S. Participants also completed a measure of emotion dysregulation. In total, there were 22 predictors of newborn HC and birthweight. We used regularized regression for predictor selection and linear prediction, followed by nonlinear models if linear models were overfit. RESULTS: HC was predicted best with a linear model (ridge regression). Newborn sex (male), number of living children, and maternal BMI predicted a larger HC, whereas maternal preeclampsia, number of prior preterm births, and race/ethnicity (Latina) predicted a smaller HC. Birthweight was predicted best with a nonlinear model (support vector machine). Occupational prestige (a marker similar to socioeconomic status) predicted higher birthweight, maternal race/ethnicity (non-White and non-Latina) predicted lower birthweight, and the number of living children, prior preterm births, and difficulty with emotional clarity had nonlinear effects. CONCLUSIONS: HC and birthweight were predicted by a variety of variables associated with prenatal stressful experiences, spanning medical, psychological, and social markers of health and stress. These findings may highlight the importance of viewing prenatal maternal health across multiple dimensions. Findings also suggest that assessing difficulties with emotional clarity during standard obstetric care (in the U.S.) may help identify risk for adverse newborn outcomes.


Asunto(s)
Peso al Nacer , Aprendizaje Automático , Humanos , Femenino , Embarazo , Recién Nacido , Estados Unidos/epidemiología , Adulto , Masculino , Salud Materna , Resultado del Embarazo/epidemiología , Cefalometría , Desarrollo Fetal
8.
J Med Internet Res ; 26: e54282, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551617

RESUMEN

BACKGROUND: Although adolescents report high levels of stress, they report engaging in few stress management techniques. Consequently, developing effective and targeted programs to help address this transdiagnostic risk factor in adolescence is particularly important. Most stress management programs for adolescents are delivered within schools, and the evidence for these programs is mixed, suggesting a need for alternative options for stress management among adolescents. OBJECTIVE: The aim of the study is to test the short-term effects of a self-guided digital mental health intervention (DMHI) designed for adolescents on perceived stress and rumination (ie, brooding). METHODS: This was a 12-week, 2-arm decentralized randomized controlled trial of adolescents aged 13 to 17 years who presented with elevated levels of perceived stress and brooding. Participants were randomly assigned to engage with a self-guided DMHI (Happify for Teens) or to a waitlist control. Participants assigned to the intervention group were given access to the program for 12 weeks. Happify for Teens consists of various evidence-based activities drawn from therapeutic modalities such as cognitive behavioral therapy, positive psychology, and mindfulness, which are then organized into several programs targeting specific areas of concern (eg, Stress Buster 101). Participants in the waitlist control received access to this product for 12 weeks upon completing the study. Participants in both groups completed measures of perceived stress, brooding, optimism, sleep disturbance, and loneliness at baseline, 4 weeks, 8 weeks, and 12 weeks. Changes in outcomes between the intervention and waitlist control groups were assessed using repeated-measures multilevel models. RESULTS: Of the 303 participants included in data analyses, 132 were assigned to the intervention and 171 to the waitlist. There were significantly greater improvements in the intervention condition for perceived stress (intervention: B=-1.50; 95% CI -1.82 to -1.19; P<.001 and control: B=-0.09; 95% CI -0.44 to 0.26; P=.61), brooding (intervention: B=-0.84; 95% CI -1.00 to -0.68; P<.001 and control: B=-0.30; 95% CI -0.47 to -0.12; P=.001), and loneliness (intervention: B=-0.96; 95% CI -1.2 to -0.73; P<.001 and control: B=-0.38; 95% CI: -0.64 to -0.12; P=.005) over the 12-week study period. Changes in optimism and sleep disturbance were not significantly different across groups (Ps≥.096). CONCLUSIONS: Happify for Teens was effective at reducing perceived stress, rumination, and loneliness among adolescents over 12 weeks when compared to a waitlist control group. Our data reveal the potential benefits of DMHIs for adolescents, which may present a more scalable, destigmatized, and cost-effective alternative to school-based programs. TRIAL REGISTRATION: ClinicalTrials.gov NCT04567888; https://clinicaltrials.gov/ct2/show/NCT04567888. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/25545.


Asunto(s)
Terapia Cognitivo-Conductual , Trastornos del Sueño-Vigilia , Adolescente , Humanos , Salud Mental , Análisis de Datos , Salud Digital , Estrés Psicológico/terapia
9.
Plant J ; 109(3): 727-736, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34784084

RESUMEN

Recent advances in the sequencing and assembly of plant genomes have allowed the generation of genomes with increasing contiguity and sequence accuracy. Chromosome level genome assemblies using sequence contigs generated from long read sequencing have involved the use of proximity analysis (Hi-C) or traditional genetic maps to guide the placement of sequence contigs within chromosomes. The development of highly accurate long reads by repeated sequencing of circularized DNA (HiFi; PacBio) has greatly increased the size of contigs. We now report the use of HiFiasm to assemble the genome of Macadamia jansenii, a genome that has been used as a model to test sequencing and assembly. This achieved almost complete chromosome level assembly from the sequence data alone without the need for higher level chromosome map information. Eight of the 14 chromosomes were represented by a single large contig (six with telomere repeats at both ends) and the other six assembled from two to four main contigs. The small number of chromosome breaks appears to be the result of highly repetitive regions including ribosomal genes that cannot be assembled by these approaches. De novo assembly of near complete chromosome level plant genomes now appears possible using these sequencing and assembly tools. Further targeted strategies might allow these remaining gaps to be closed.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Macadamia/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
10.
BMC Genomics ; 24(1): 18, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639618

RESUMEN

BACKGROUND: The importance of uridine 5'-diphosphate glucose (UDP-G) synthesis and degradation on carbon (C) partitioning has been indicated in several studies of plant systems, whereby the kinetic properties and abundance of involved enzymes had a significant effect upon the volume of C moving into the hemicellulose, cellulose and sucrose pools. In this study, the expression of 136 genes belonging to 32 gene families related to UDP-G metabolism was studied in 3 major sugarcane organs (including leaf, internode and root) at 6 different developmental stages in 2 commercial genotypes. RESULTS: Analysis of the genes associated with UDP-G metabolism in leaves indicated low expression of sucrose synthase, but relatively high expression of invertase genes, specifically cell-wall invertase 4 and neutral acid invertase 1-1 and 3 genes. Further, organs that are primarily responsible for sucrose synthesis or bioaccumulation, i.e., in source organs (mature leaves) and storage sink organs (mature internodes), had very low expression of sucrose, cellulose and hemicellulose synthesis genes, specifically sucrose synthase 1 and 2, UDP-G dehydrogenase 5 and several cellulose synthase subunit genes. Gene expression was mostly very low in both leaf and mature internode samples; however, leaves did have a comparatively heightened invertase and sucrose phosphate synthase expression. Major differences were observed in the transcription of several genes between immature sink organs (roots and immature internodes). Gene transcription favoured utilisation of UDP-G toward insoluble and respiratory pools in roots. Whereas, there was comparatively higher expression of sucrose synthetic genes, sucrose phosphate synthase 1 and 4, and comparatively lower expression of many genes associated with C flow to insoluble and respiratory pools including myo-Inositol oxygenase, UDP-G dehydrogenase 4, vacuolar invertase 1, and several cell-wall invertases in immature internodes. CONCLUSION: This study represents the first effort to quantify the expression of gene families associated with UDP-G metabolism in sugarcane. Transcriptional analysis displayed the likelihood that C partitioning in sugarcane is closely related to the transcription of genes associated with the UDP-G metabolism. The data presented may provide an accurate genetic reference for future efforts in altering UDP-G metabolism and in turn C partitioning in sugarcane.


Asunto(s)
Saccharum , Saccharum/metabolismo , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Uridina Difosfato/metabolismo , Sacarosa/metabolismo , Celulosa/metabolismo , Glucosa/metabolismo , Oxidorreductasas/metabolismo
11.
BMC Plant Biol ; 23(1): 440, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726703

RESUMEN

BACKGROUND: Dioecious plants have male and female flowers on separate plants. Jojoba is a dioecious plant that is drought-tolerant and native to arid areas. The genome sequence of male and female plants was recently reported and revealed an X and Y chromosome system, with two large male-specific insertions in the Y chromosome. RESULTS: A total of 16,923 differentially expressed genes (DEG) were identified between the flowers of the male and female jojoba plants. This represented 40% of the annotated genes in the genome. Many genes, including those responsible for plant environmental responses and those encoding transcription factors (TFs), were specific to male or female reproductive organs. Genes involved in plant hormone metabolism were also found to be associated with flower and pollen development. A total of 8938 up-regulated and 7985 down-regulated genes were identified in comparison between male and female flowers, including many novel genes specific to the jojoba plant. The most differentially expressed genes were associated with reproductive organ development. The highest number of DEG were linked with the Y chromosome in male plants. The male specific parts of the Y chromosome encoded 12 very highly expressed genes including 9 novel genes and 3 known genes associated with TFs and a plant hormone which may play an important role in flower development. CONCLUSION: Many genes, largely with unknown functions, may explain the sexual dimorphisms in jojoba plants and the differentiation of male and female flowers.


Asunto(s)
Caryophyllales , Reguladores del Crecimiento de las Plantas , Animales , Sequías , Flores/genética , Expresión Génica
12.
Mol Genet Genomics ; 298(6): 1395-1405, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37679604

RESUMEN

Recently, a novel purple-pericarp super-sweetcorn line, 'Tim1' (A1A1.sh2sh2) was derived from the purple-pericarp maize 'Costa Rica' (A1Sh2.A1Sh2) and white shrunken2 (sh2) super-sweetcorn 'Tims-white' (a1sh2.a1sh2), however, information regarding anthocyanin biosynthesis genes controlling purple colour and sweetness gene is lacking. Specific sequence differences in the CDS (coding DNA sequence) and promoter regions of the anthocyanin biosynthesis structural genes, anthocyanin1 (A1), purple aleurone1 (Pr1) and regulatory genes, purple plant1 (Pl1), plant colour1 (B1), coloured1 (R1), and the sweetcorn structural gene, shrunken2 (sh2) were investigated using the publicly available annotated yellow starchy maize, B73 (NAM5.0) as a reference genome. In the CDS region, the A1, Pl1 and R1 gene sequence differences of 'Tim1' and 'Costa Rica' were similar, as they control purple-pericarp pigmentation. However, the B1 gene showed similarity between the 'Tim1' and 'Tims-white' lines, which may indicate that it does not have a role in controlling pericarp colour, unlike the report of a previous study. In the case of the Pr1 gene, in contrast to 'Costa Rica', 6- and 8-bp dinucleotide (TA) repeats were observed in the promoter region of the 'Tims-white' and 'Tim1' lines, respectively, indicating the defective functionality (redder colour in 'Tim1' rather than purple in 'Costa Rica') of the recessive pr1 allele. In sweetcorn, the structural gene (sh2), sequence showed similarity between purple-sweet 'Tim1' and its white-sweet parent 'Tims-white', as both display a shrunken phenotype in their mature kernels. These findings revealed that the developed purple-sweet line is different to the reference yellow-nonsweet line in both the anthocyanin biosynthesis and sweetcorn genes.


Asunto(s)
Antocianinas , Zea mays , Antocianinas/genética , Zea mays/genética , Zea mays/metabolismo , Fenotipo , Pigmentación/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Crit Rev Biotechnol ; 43(5): 716-733, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35723584

RESUMEN

Rice is one of the most essential crops since it meets the calorific needs of 3 billion people around the world. Rice seed development initiates upon fertilization, leading to the establishment of two distinct filial tissues, the endosperm and embryo, which accumulate distinct seed storage products, such as starch, storage proteins, and lipids. A range of systems biology tools deployed in dissecting the spatiotemporal dynamics of transcriptome data, methylation, and small RNA based regulation operative during seed development, influencing the accumulation of storage products was reviewed. Studies of other model systems are also considered due to the limited information on the rice transcriptome. This review highlights key genes identified through a holistic view of systems biology targeted to modify biochemical composition and influence rice grain quality and nutritional value with the target of improving rice as a functional food.


Asunto(s)
Oryza , Humanos , Semillas , Grano Comestible , Endospermo/genética , Endospermo/metabolismo , Biología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
14.
Diabetes Obes Metab ; 25(7): 1985-1994, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36999233

RESUMEN

AIM: To determine the effects of astaxanthin treatment on lipids, cardiovascular disease (CVD) markers, glucose tolerance, insulin action and inflammation in individuals with prediabetes and dyslipidaemia. MATERIALS AND METHODS: Adult participants with dyslipidaemia and prediabetes (n = 34) underwent baseline blood draw, an oral glucose tolerance test and a one-step hyperinsulinaemic-euglycaemic clamp. They were then randomized (n = 22 treated, 12 placebo) to receive astaxanthin 12 mg daily or placebo for 24 weeks. Baseline studies were repeated after 12 and 24 weeks of therapy. RESULTS: After 24 weeks, astaxanthin treatment significantly decreased low-density lipoprotein (-0.33 ± 0.11 mM) and total cholesterol (-0.30 ± 0.14 mM) (both P < .05). Astaxanthin also reduced levels of the CVD risk markers fibrinogen (-473 ± 210 ng/mL), L-selectin (-0.08 ± 0.03 ng/mL) and fetuin-A (-10.3 ± 3.6 ng/mL) (all P < .05). While the effects of astaxanthin treatment did not reach statistical significance, there were trends toward improvements in the primary outcome measure, insulin-stimulated, whole-body glucose disposal (+0.52 ± 0.37 mg/m2 /min, P = .078), as well as fasting [insulin] (-5.6 ± 8.4 pM, P = .097) and HOMA2-IR (-0.31 ± 0.16, P = .060), suggesting improved insulin action. No consistent significant differences from baseline were observed for any of these outcomes in the placebo group. Astaxanthin was safe and well tolerated with no clinically significant adverse events. CONCLUSIONS: Although the primary endpoint did not meet the prespecified significance level, these data suggest that astaxanthin is a safe over-the-counter supplement that improves lipid profiles and markers of CVD risk in individuals with prediabetes and dyslipidaemia.


Asunto(s)
Enfermedades Cardiovasculares , Dislipidemias , Estado Prediabético , Adulto , Humanos , Estado Prediabético/complicaciones , Estado Prediabético/tratamiento farmacológico , Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Glucemia , Factores de Riesgo , Insulina/uso terapéutico , Glucosa/uso terapéutico , Colesterol , Factores de Riesgo de Enfermedad Cardiaca , Dislipidemias/tratamiento farmacológico
15.
Plant J ; 108(5): 1283-1294, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34570389

RESUMEN

Most flowering plants are hermaphrodites, but around 6% of species are dioecious, having separate male and female plants. Sex chromosomes and some sex-specific genes have been reported in plants, but the genome sequences have not been compared. We now report the genome sequence of male and female jojoba (Simmondsia chinensis) plants, revealing a very large difference in the sex chromosomes. The male genome assembly was 832 Mb and the female 822 Mb. This was explained by the large size differences in the Y chromosome (37.6 Mb) compared with the X chromosome (26.9 Mb). Relative to the X chromosome, the Y chromosome had two large insertions each of more than 5 Mb containing more than 400 genes. Many of the genes in the chromosome-specific regions were novel. These male-specific regions included many flowering-related and stress response genes. Smaller insertions found only in the X chromosome totalled 877 kb. The wide divergence of the sex chromosomes suggests a long period of adaptation to diverging sex-specific roles. Male and female plants may have evolved to accommodate factors such as differing reproductive resource allocation requirements under the stress of the desert environment in which the plants are found. The sex-determining regions accumulate genes beneficial to each sex. This has required the evolution of many more novel sex-specific genes than has been reported for other organisms. This suggest that dioecious plants provide a novel source of genes for manipulation of reproductive performance and environmental adaptation in crops.


Asunto(s)
Caryophyllales/genética , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Evolución Molecular , Anotación de Secuencia Molecular , Caracteres Sexuales
16.
Planta ; 255(2): 51, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35084593

RESUMEN

MAIN CONCLUSION: Australian native species of sorghum contain negligible amounts of dhurrin in their leaves and the cyanogenesis process is regulated differently under water-stress in comparison to domesticated sorghum species. Cyanogenesis in forage sorghum is a major concern in agriculture as the leaves of domesticated sorghum are potentially toxic to livestock, especially at times of drought which induces increased production of the cyanogenic glucoside dhurrin. The wild sorghum species endemic to Australia have a negligible content of dhurrin in the above ground tissues and thus represent a potential resource for key agricultural traits like low toxicity. In this study we investigated the differential expression of cyanogenesis related genes in the leaf tissue of the domesticated species Sorghum bicolor and the Australian native wild species Sorghum macrospermum grown in glasshouse-controlled water-stress conditions using RNA-Seq analysis to analyse gene expression. The study identified genes, including those in the cyanogenesis pathway, that were differentially regulated in response to water-stress in domesticated and wild sorghum. In the domesticated sorghum, dhurrin content was significantly higher compared to that in the wild sorghum and increased with stress and decreased with age whereas in wild sorghum the dhurrin content remained negligible. The key genes in dhurrin biosynthesis, CYP79A1, CYP71E1 and UGT85B1, were shown to be highly expressed in S. bicolor. DHR and HNL encoding the dhurrinase and α-hydroxynitrilase catalysing bio-activation of dhurrin were also highly expressed in S. bicolor. Analysis of the differences in expression of cyanogenesis related genes between domesticated and wild sorghum species may allow the use of these genetic resources to produce more acyanogenic varieties in the future.


Asunto(s)
Sorghum , Australia , Grano Comestible , Nitrilos , Sorghum/genética , Agua
17.
Mol Ecol ; 31(8): 2207-2222, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35170117

RESUMEN

The last decade has witnessed huge technological advances in genomics, particularly in DNA sequencing. Here, we review the actual and potential application of genomics in supporting in situ conservation of crop wild relatives (CWRs). In addition to helping in prioritization of protection of CWR taxa and in situ conservation sites, genome analysis is allowing the identification of novel alleles that need to be prioritized for conservation. Genomics is enabling the identification of potential sources of important adaptive traits that can guide the establishment or enrichment of in situ genetic reserves. Genomic tools also have the potential for developing a robust framework for monitoring and reporting genome-based indicators of genetic diversity changes associated with factors such as land use or climate change. These tools have been demonstrated to have an important role in managing the conservation of populations, supporting sustainable access and utilization of CWR diversity, enhancing accelerated domestication of new crops and forensic genomics thus preventing misappropriation of genetic resources. Despite this great potential, many policy makers and conservation managers have failed to recognize and appreciate the need to accelerate the application of genomics to support the conservation and management of biodiversity in CWRs to underpin global food security. Funding and inadequate genomic expertise among conservation practitioners also remain major hindrances to the widespread application of genomics in conservation.


Asunto(s)
Productos Agrícolas , Genómica , Biodiversidad , Cambio Climático , Productos Agrícolas/genética , Variación Genética
18.
Photosynth Res ; 153(3): 125-134, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35648247

RESUMEN

Carbon concentrating mechanisms (CCMs) in plants are abaptive features that have evolved to sustain plant growth in unfavorable environments, especially at low atmospheric carbon levels and high temperatures. Uptake of CO2 and its storage in the aerenchyma tissues of Lycopsids and diurnal acidity fluctuation in aquatic plants during the Palaeozoic era (ca. 300 Ma.) would represent the earliest evolution of a CCM. The CCM parts of the dark reactions of photosynthesis have evolved many times, while the light reactions are conserved across plant lineages. A C4 type CCM, leaf C4 photosynthesis is evolved in the PACMAD clade of the Poaceae family. The evolution of C4 photosynthesis from C3 photosynthesis was an abaptation. Photosynthesis in reproductive tissues of sorghum and maize (PACMAD clade) has been shown to be of a weaker C4 type (high CO2 compensation point, low carbon isotope discrimination, and lack of Rubisco compartmentalization, when compared to the normal C4 types) than that in the leaves (normal C4 type). However, this does not fit well with the character polarity concept from an evolutionary perspective. In a recent model proposed for CCM evolution, the development of a rudimentary CCM prior to the evolution of a more efficient CCM (features contrasting to a weaker C4 type, leading to greater biomass production rate) has been suggested. An intermediate crassulacean acid metabolism (CAM) type of CCM (rudimentary) was reported in the genera, Brassia, Coryanthes, Eriopsis, Peristeria, of the orchids (well-known group of plants that display the CAM pathway). Similarly, we propose here the evolution of a rudimentary CCM (C4-like type pathway) in the non-foliar tissues of the Poaceae, prior to the evolution of the C4 pathway as identified in the leaves of the C4 species of the PACMAD clade.


Asunto(s)
Poaceae , Ribulosa-Bifosfato Carboxilasa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Plantas/metabolismo , Poaceae/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
19.
Theor Appl Genet ; 135(5): 1619-1636, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35224663

RESUMEN

Sugarcane, with its exceptional carbon dioxide assimilation, biomass and sugar yield, has a high potential for the production of bio-energy, bio-plastics and high-value products in the food and pharmaceutical industries. A crucial challenge for long-term economic viability and environmental sustainability is also to optimize the production of biomass composition and carbon sequestration. Sugarcane varieties such as KQ228 and Q253 are highly utilized in the industry. These varieties are characterized by a high early-season sugar content associated with high yield. In order to investigate these correlations, 1,440 internodes were collected and combined to generate a set of 120 samples in triplicate across 24 sugarcane cultivars at five different development stages. Weighted gene co-expression network analysis (WGCNA) was used and revealed for the first time two sets of co-expressed genes with a distinct and opposite correlation between fibre and sugar content. Gene identification and metabolism pathways analysis was used to define these two sets of genes. Correlation analysis identified a large number of interconnected metabolic pathways linked to sugar content and fibre content. Unsupervised hierarchical clustering of gene expression revealed a stronger level of segregation associated with the genotypes than the stage of development, suggesting a dominant genetic influence on biomass composition and facilitating breeding selection. Characterization of these two groups of co-expressed key genes can help to improve breeding program for high fibre, high sugar species or plant synthetic biology.


Asunto(s)
Saccharum , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Estaciones del Año , Sacarosa/metabolismo , Azúcares , Transcriptoma
20.
Mol Cell ; 56(3): 425-435, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25458843

RESUMEN

Pyruvate lies at a central biochemical node connecting carbohydrate, amino acid, and fatty acid metabolism, and the regulation of pyruvate flux into mitochondria represents a critical step in intermediary metabolism impacting numerous diseases. To characterize changes in mitochondrial substrate utilization in the context of compromised mitochondrial pyruvate transport, we applied (13)C metabolic flux analysis (MFA) to cells after transcriptional or pharmacological inhibition of the mitochondrial pyruvate carrier (MPC). Despite profound suppression of both glucose and pyruvate oxidation, cell growth, oxygen consumption, and tricarboxylic acid (TCA) metabolism were surprisingly maintained. Oxidative TCA flux was achieved through enhanced reliance on glutaminolysis through malic enzyme and pyruvate dehydrogenase (PDH) as well as fatty acid and branched-chain amino acid oxidation. Thus, in contrast to inhibition of complex I or PDH, suppression of pyruvate transport induces a form of metabolic flexibility associated with the use of lipids and amino acids as catabolic and anabolic fuels.


Asunto(s)
Proproteína Convertasa 1/metabolismo , Proproteína Convertasa 2/metabolismo , Ácido Pirúvico/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Ciclo del Ácido Cítrico , Ácidos Grasos/metabolismo , Glutamina/metabolismo , Humanos , Lipogénesis , Análisis de Flujos Metabólicos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA