Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Cell Sci ; 136(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37337792

RESUMEN

Accumulating evidence in several model organisms indicates that reduced sphingolipid biosynthesis promotes longevity, although underlying mechanisms remain unclear. In yeast, sphingolipid depletion induces a state resembling amino acid restriction, which we hypothesized might be due to altered stability of amino acid transporters at the plasma membrane. To test this, we measured surface abundance for a diverse panel of membrane proteins in the presence of myriocin, a sphingolipid biosynthesis inhibitor, in Saccharomyces cerevisiae. Unexpectedly, we found that surface levels of most proteins examined were either unaffected or increased during myriocin treatment, consistent with an observed decrease in bulk endocytosis. In contrast, sphingolipid depletion triggered selective endocytosis of the methionine transporter Mup1. Unlike methionine-induced Mup1 endocytosis, myriocin triggered Mup1 endocytosis that required the Rsp5 adaptor Art2, C-terminal lysine residues of Mup1 and the formation of K63-linked ubiquitin polymers. These findings reveal cellular adaptation to sphingolipid depletion by ubiquitin-mediated remodeling of nutrient transporter composition at the cell surface.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
2.
PLoS Genet ; 16(3): e1008677, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32191698

RESUMEN

Endocytosis is regulated in response to changing environmental conditions to adjust plasma membrane (PM) protein composition for optimal cell growth. Protein networks involved in cargo capture and sorting, membrane sculpting and deformation, and vesicle scission have been well-characterized, but less is known about the networks that sense extracellular cues and relay signals to trigger endocytosis of specific cargo. Hal4 and Hal5 are yeast Snf1-related kinases that were previously reported to regulate nutrient transporter stability by an unknown mechanism. Here we demonstrate that loss of Hal4 and Hal5 activates endocytosis of many different kinds of PM proteins, including Art1-mediated and Art1-independent endocytic events. Acute inhibition of Hal5 in the absence of Hal4 triggers rapid endocytosis, suggesting that Hal kinases function in a nutrient-sensing relay upstream of the endocytic response. Interestingly, Hal5 localizes to the PM, but shifts away from the cell surface in response to stimulation with specific nutrients. We propose that Hal5 functions as a nutrient-responsive regulator of PM protein stability, antagonizing endocytosis and promoting stability of endocytic cargos at the PM in nutrient-limiting conditions.


Asunto(s)
Endocitosis/fisiología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mapas de Interacción de Proteínas , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
J Bacteriol ; 201(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31085691

RESUMEN

Ubiquitin-like protein (Ubl) modification targets proteins for transient inactivation and/or proteasome-mediated degradation in archaea. Here the rhodanese-like domain (RHD) protein UbaC (HVO_1947) was found to copurify with the E1-like enzyme (UbaA) of the Ubl modification machinery in the archaeon Haloferax volcanii UbaC was shown to be important for Ubl ligation, particularly for the attachment of the Ubl SAMP2/3s to protein targets after exposure to oxidants (NaOCl, dimethyl sulfoxide [DMSO], and methionine sulfoxide [MetO]) and the proteasome inhibitor bortezomib. While UbaC was needed for ligation of the Ubl SAMP1 to MoaE (the large subunit of molybdopterin synthase), it was not important in the formation of oxidant-induced SAMP1 protein conjugates. Indicative of defects in sulfur relay, mutation of ubaC impaired molybdenum cofactor (Moco)-dependent DMSO reductase activity and cell survival at elevated temperature, suggesting a correlation with defects in the 2-thiolated state of wobble uridine tRNA. Overall, the archaeal stand-alone RHD UbaC has an important function in Ubl ligation and is associated with sulfur relay processes.IMPORTANCE Canonical E2 Ub/Ubl-conjugating enzymes are not conserved in the dual-function Ubl systems associated with protein modification and sulfur relay. Instead, the C-terminal RHDs of E1-RHD fusion proteins are the apparent E2 modules of these systems in eukaryotes. E1s that lack an RHD are common in archaea. Here we identified an RHD (UbaC) that serves as an apparent E2 analog with the E1-like UbaA in the dual-function Ubl sampylation system of archaea. Unlike the eukaryotic E1-RHD fusion, the archaeal RHD is a stand-alone protein. This new insight suggests that E1 function in Ubl pathways could be influenced by shifts in RHD abundance and/or competition with other protein partners in the cell.


Asunto(s)
Proteínas Arqueales/metabolismo , Haloferax volcanii/enzimología , Azufre/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Haloferax volcanii/química , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Dominios Proteicos , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo , Tiosulfato Azufretransferasa , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(29): E4151-60, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27385828

RESUMEN

The Ltn1 E3 ligase (listerin in mammals) has emerged as a paradigm for understanding ribosome-associated ubiquitylation. Ltn1 binds to 60S ribosomal subunits to ubiquitylate nascent polypeptides that become stalled during synthesis; among Ltn1's substrates are aberrant products of mRNA lacking stop codons [nonstop translation products (NSPs)]. Here, we report the reconstitution of NSP ubiquitylation in Neurospora crassa cell extracts. Upon translation in vitro, ribosome-stalled NSPs were ubiquitylated in an Ltn1-dependent manner, while still ribosome-associated. Furthermore, we provide biochemical evidence that the conserved N-terminal domain (NTD) plays a significant role in the binding of Ltn1 to 60S ribosomal subunits and that NTD mutations causing defective 60S binding also lead to defective NSP ubiquitylation, without affecting Ltn1's intrinsic E3 ligase activity. Finally, we report the crystal structure of the Ltn1 NTD at 2.4-Å resolution. The structure, combined with additional mutational studies, provides insight to NTD's role in binding stalled 60S subunits. Our findings show that Neurospora extracts can be used as a tool to dissect mechanisms underlying ribosome-associated protein quality control and are consistent with a model in which Ltn1 uses 60S subunits as adapters, at least in part via its NTD, to target stalled NSPs for ubiquitylation.


Asunto(s)
Proteínas Fúngicas , Dominios Proteicos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ubiquitina-Proteína Ligasas , Mezclas Complejas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación , Neurospora crassa , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
Proteomics ; 16(7): 1100-10, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26841191

RESUMEN

Small archeal modifier proteins (SAMPs) are related to ubiquitin in tertiary structure and in their isopeptide linkage to substrate proteins. SAMPs also function in sulfur mobilization to form biomolecules such as molybdopterin and thiolated tRNA. While SAMP1 is essential for anaerobic growth and covalently attached to lysine residues of its molybdopterin synthase partner MoaE (K240 and K247), the full diversity of proteins modified by samp1ylation is not known. Here, we expand the knowledge of proteins isopeptide linked to SAMP1. LC-MS/MS analysis of -Gly-Gly signatures derived from SAMP1 S85R conjugates cleaved with trypsin was used to detect sites of sampylation (23 lysine residues) that mapped to 11 target proteins. Many of the identified target proteins were associated with sulfur metabolism and oxidative stress including MoaE, SAMP-activating E1 enzyme (UbaA), methionine sulfoxide reductase homologs (MsrA and MsrB), and the Fe-S assembly protein SufB. Several proteins were found to have multiple sites of samp1ylation, and the isopeptide linkage at SAMP3 lysines (K18, K55, and K62) revealed hetero-SAMP chain topologies. Follow-up affinity purification of selected protein targets (UbaA and MoaE) confirmed the LC-MS/MS results. 3D homology modeling suggested sampy1ylation is autoregulatory in inhibiting the activity of its protein partners (UbaA and MoaE), while occurring on the surface of some protein targets, such as SufB and MsrA/B. Overall, we provide evidence that SAMP1 is a ubiquitin-like protein modifier that is relatively specific in tagging its protein partners as well as proteins associated with oxidative stress response.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Haloferax volcanii/metabolismo , Estrés Oxidativo/fisiología , Proteoma/metabolismo , Azufre/metabolismo , Haloferax volcanii/química , Modelos Moleculares , Proteoma/análisis , Proteoma/química , Azufre/química , Ubiquitina
6.
Appl Environ Microbiol ; 82(2): 538-48, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546423

RESUMEN

Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a Vmax of 465 U · mg(-1) for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg(2+). Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a "salt-loving" noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies.


Asunto(s)
Proteínas Arqueales/metabolismo , Haloferax volcanii/enzimología , Pirofosfatasa Inorgánica/metabolismo , Cloruro de Sodio/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Estabilidad de Enzimas , Haloferax volcanii/química , Haloferax volcanii/clasificación , Haloferax volcanii/genética , Calor , Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/genética , Cinética , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Cloruro de Sodio/análisis , Solventes/química , Solventes/metabolismo , Especificidad por Sustrato
7.
Extremophiles ; 18(2): 283-93, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24343376

RESUMEN

In eukaryotes, the 26S proteasome degrades ubiquitinylated proteins in an ATP-dependent manner. Archaea mediate a form of post-translational modification of proteins termed sampylation that resembles ubiquitinylation. Sampylation was identified in Haloferax volcanii, a moderate halophilic archaeon that synthesizes homologs of 26S proteasome subunits including 20S core particles and regulatory particle triple-A ATPases (Rpt)-like proteasome-associated nucleotidases (PAN-A/1 and PAN-B/2). To determine whether sampylated proteins associate with the Rpt subunit homologs, PAN-A/1 was purified to homogeneity from Hfx. volcanii and analyzed for its subunit stoichiometry, nucleotide-hydrolyzing activity and binding to sampylated protein targets. PAN-A/1 was found to be associated as a dodecamer (630 kDa) with a configuration in TEM suggesting a complex of two stacked hexameric rings. PAN-A/1 had high affinity for ATP (K m of ~0.44 mM) and hydrolyzed this nucleotide with a specific activity of 0.33 ± 0.1 µmol Pi/h per mg protein and maximum at 42 °C. PAN-A1 was stabilized by 2 M salt with a decrease in activity at lower concentrations of salt that correlated with dissociation of the dodecamer into trimers to monomers. Binding of PAN-A/1 to a sampylated protein was demonstrated by modification of a far Western blotting technique (derived from the standard Western blot method to detect protein-protein interaction in vitro) for halophilic proteins. Overall, our results support a model in which sampylated proteins associate with the PAN-A/1 AAA+ ATPase in proteasome-mediated proteolysis and/or protein remodeling and provide a method for assay of halophilic protein-protein interactions.


Asunto(s)
Proteínas Arqueales/metabolismo , Haloferax volcanii/enzimología , Nucleotidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Tolerancia a la Sal , Proteínas Arqueales/química , Haloferax volcanii/fisiología , Nucleotidasas/química , Concentración Osmolar , Unión Proteica , Multimerización de Proteína
8.
Mol Microbiol ; 86(4): 971-87, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22970855

RESUMEN

Proteins with JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) domains are widespread among all domains of life, yet poorly understood. Here we report the purification and characterization of an archaeal JAMM/MPN+ domain protein (HvJAMM1) from Haloferax volcanii that cleaves ubiquitin-like small archaeal modifier proteins (SAMP1/2) from protein conjugates. HvJAMM1 cleaved SAMP1/2 conjugates generated in H. volcanii as well as isopeptide- and linear-linked SAMP1-MoaE in purified form. Cleavage of linear linked SAMP1-MoaE was dependent on the presence of the SAMP domain and the C-terminal VSGG motif of this domain. While HvJAMM1 was inhibited by size exclusion chromatography and metal chelators, its activity could be restored by addition of excess ZnCl2 . HvJAMM1 residues (Glu31, His88, His90, Ser98 and Asp101) that were conserved with the JAMM/MPN+ active-site motif were required for enzyme activity. Together, these results provide the first example of a JAMM/MPN+ zinc metalloprotease that independently catalyses the cleavage of ubiquitin-like (isopeptide and linear) bonds from target proteins. In archaea, HvJAMM1 likely regulates sampylation and the pools of 'free' SAMP available for protein modification. HvJAMM1-type proteins are thought to release the SAMPs from proteins modified post-translationally as well as those synthesized as domain fusions.


Asunto(s)
Proteínas Arqueales/metabolismo , Haloferax volcanii/enzimología , Metaloendopeptidasas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Arqueales/aislamiento & purificación , Cloruros/metabolismo , Análisis Mutacional de ADN , Activadores de Enzimas/metabolismo , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/aislamiento & purificación , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Proteolisis , Compuestos de Zinc/metabolismo
9.
Methods Mol Biol ; 2591: 151-169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36350548

RESUMEN

Archaea can be used as microbial platforms to discover new types of deubiquitinase-like (DUB-like) enzymes and to produce ubiquitin/ubiquitin-like (Ub/Ubl) protein conjugates as substrates for DUB/DUB-like activity assays. Here we outline how to use archaea to synthesize, purify, and assay the activity of DUB-like enzymes with unusual properties, including catalytic activity in hypersaline conditions, organic solvents, and high temperatures. We also outline the application of archaea in forming Ub/Ubl isopeptide linkages that include the covalent attachments of diverse archaeal and eukaryotic Ub/Ubls to target proteins. Archaea form these Ub/Ubl-linked protein conjugates in vivo, and the resulting products are found to serve as useful DUB substrates for in vitro assays.


Asunto(s)
Archaea , Ubiquitinas , Ubiquitinas/metabolismo , Archaea/metabolismo , Ubiquitina/metabolismo , Células Eucariotas/metabolismo , Enzimas Desubicuitinizantes
10.
Methods Mol Biol ; 2591: 283-295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36350555

RESUMEN

Ubiquitin modification is known to regulate endocytic trafficking of many different types of cargo in eukaryotic cells, but it can be challenging to determine what role, if any, ubiquitin plays in the trafficking of a novel or uncharacterized endocytic cargo. Here, we describe a useful approach that leverages fusion to deubiquitinase (DUB) catalytic domains to explore the role ubiquitin plays in endocytic trafficking. This approach can be applied to the analysis of many different endocytic cargos in different cell types, and it can also be used to study linkage specificity in endocytic trafficking. Several different trafficking assays are described to illustrate the broad utility of this "DUB fusion" approach.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Endocitosis/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo
11.
Aging (Albany NY) ; 15(2): 472-491, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36640272

RESUMEN

As the elderly population increases, chronic, age-associated diseases are challenging healthcare systems around the world. Nutrient limitation is well known to slow the aging process and improve health. Regrettably, practicing nutrient restriction to improve health is unachievable for most people. Alternatively, pharmacological strategies are being pursued including myriocin which increases lifespan in budding yeast. Myriocin impairs sphingolipid synthesis, resulting in lowered amino acid pools which promote entry into a quiescent, long-lived state. Here we present transcriptomic data during the first 6 hours of drug treatment that improves our mechanistic understanding of the cellular response to myriocin and reveals a new role for ubiquitin in longevity. Previously we found that the methionine transporter Mup1 traffics to the plasma membrane normally in myriocin-treated cells but is not active and undergoes endocytic clearance. We now show that UBI4, a gene encoding stressed-induced ubiquitin, is vital for myriocin-enhanced lifespan. Furthermore, we show that Mup1 fused to a deubiquitinase domain impairs myriocin-enhanced longevity. Broader effects of myriocin treatment on ubiquitination are indicated by our finding of a significant increase in K63-linked ubiquitin polymers following myriocin treatment. Although proteostasis is broadly accepted as a pillar of aging, our finding that ubiquitination of an amino acid transporter promotes longevity in myriocin-treated cells is novel. Addressing the role of ubiquitination/deubiquitination in longevity has the potential to reveal new strategies and targets for promoting healthy aging.


Asunto(s)
Longevidad , Proteostasis , Anciano , Humanos , Longevidad/genética , Envejecimiento , Ubiquitina/metabolismo , Esfingolípidos/metabolismo
12.
FEBS J ; 289(16): 4797-4810, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34214249

RESUMEN

The regulatory influence of ubiquitin is vast, encompassing all cellular processes, by virtue of its central roles in protein degradation, membrane trafficking, and cell signaling. But how does ubiquitin, a 76 amino acid peptide, carry out such diverse, complex functions in eukaryotic cells? Part of the answer is rooted in the high degree of complexity associated with ubiquitin polymers, which can be 'read' and processed differently depending on topology and cellular context. However, recent evidence indicates that post-translational modifications on ubiquitin itself enhance the complexity of the ubiquitin code. Here, we review recent discoveries related to the regulation of the ubiquitin code by phosphorylation. We summarize what is currently known about phosphorylation of ubiquitin at Ser65, Ser57, and Thr12, and we discuss the potential for phosphoregulation of ubiquitin at other sites. We also discuss accumulating evidence that ubiquitin-like modifiers, such as SUMO, are likewise regulated by phosphorylation. A complete understanding of these regulatory codes and their complex lexicon will require dissection of mechanisms that govern phosphorylation of ubiquitin and ubiquitin-like proteins, particularly in the context of cellular stress and disease.


Asunto(s)
Procesamiento Proteico-Postraduccional , Ubiquitina , Fosforilación , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/metabolismo
13.
Elife ; 112022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35904239

RESUMEN

Deciphering mechanisms controlling SNARE localization within the Golgi complex is crucial to understanding protein trafficking patterns within the secretory pathway. SNAREs are also thought to prime coatomer protein I (COPI) assembly to ensure incorporation of these essential cargoes into vesicles, but the regulation of these events is poorly understood. Here, we report roles for ubiquitin recognition by COPI in SNARE trafficking and in stabilizing interactions between Arf, COPI, and Golgi SNAREs in Saccharomyces cerevisiae. The ability of COPI to bind ubiquitin, but not the dilysine motif, through its N-terminal WD repeat domain of ß'-COP or through an unrelated ubiquitin-binding domain is essential for the proper localization of Golgi SNAREs Bet1 and Gos1. We find that COPI, the ArfGAP Glo3, and multiple Golgi SNAREs are ubiquitinated. Notably, the binding of Arf and COPI to Gos1 is markedly enhanced by ubiquitination of these components. Glo3 is proposed to prime COPI-SNARE interactions; however, Glo3 is not enriched in the ubiquitin-stabilized SNARE-Arf-COPI complex but is instead enriched with COPI complexes that lack SNAREs. These results support a new model for how posttranslational modifications drive COPI priming events crucial for Golgi SNARE localization.


Asunto(s)
Proteína Coat de Complejo I/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína Coatómero/genética , Proteína Coatómero/metabolismo , Aparato de Golgi/metabolismo , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
14.
Aging (Albany NY) ; 13(6): 7846-7871, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33744865

RESUMEN

The increasing prevalence of age-related diseases and resulting healthcare insecurity and emotional burden require novel treatment approaches. Several promising strategies seek to limit nutrients and promote healthy aging. Unfortunately, the human desire to consume food means this strategy is not practical for most people but pharmacological approaches might be a viable alternative. We previously showed that myriocin, which impairs sphingolipid synthesis, increases lifespan in Saccharomyces cerevisiae by modulating signaling pathways including the target of rapamycin complex 1 (TORC1). Since TORC1 senses cellular amino acids, we analyzed amino acid pools and identified 17 that are lowered by myriocin treatment. Studying the methionine transporter, Mup1, we found that newly synthesized Mup1 traffics to the plasma membrane and is stable for several hours but is inactive in drug-treated cells. Activity can be restored by adding phytosphingosine to culture medium thereby bypassing drug inhibition, thus confirming a sphingolipid requirement for Mup1 activity. Importantly, genetic analysis of myriocin-induced longevity revealed a requirement for the Gtr1/2 (mammalian Rags) and Vps34-Pib2 amino acid sensing pathways upstream of TORC1, consistent with a mechanism of action involving decreased amino acid availability. These studies demonstrate the feasibility of pharmacologically inducing a state resembling amino acid restriction to promote healthy aging.


Asunto(s)
Aminoácidos/metabolismo , Longevidad/efectos de los fármacos , Proteínas/metabolismo , Saccharomyces cerevisiae/fisiología , Relación Dosis-Respuesta a Droga , Saccharomyces cerevisiae/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacología
15.
Elife ; 92020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33074099

RESUMEN

Ubiquitination regulates many different cellular processes, including protein quality control, membrane trafficking, and stress responses. The diversity of ubiquitin functions in the cell is partly due to its ability to form chains with distinct linkages that can alter the fate of substrate proteins in unique ways. The complexity of the ubiquitin code is further enhanced by post-translational modifications on ubiquitin itself, the biological functions of which are not well understood. Here, we present genetic and biochemical evidence that serine 57 (Ser57) phosphorylation of ubiquitin functions in stress responses in Saccharomyces cerevisiae, including the oxidative stress response. We also identify and characterize the first known Ser57 ubiquitin kinases in yeast and human cells, and we report that two Ser57 ubiquitin kinases regulate the oxidative stress response in yeast. These studies implicate ubiquitin phosphorylation at the Ser57 position as an important modifier of ubiquitin function, particularly in response to proteotoxic stress.


Asunto(s)
Estrés Oxidativo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Fosforilación , Saccharomyces cerevisiae/enzimología , Serina , Ubiquitina-Proteína Ligasas/fisiología
16.
Curr Biol ; 30(22): 4399-4412.e7, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32916113

RESUMEN

Cellular function requires molecular motors to transport cargoes to their correct intracellular locations. The regulated assembly and disassembly of motor-adaptor complexes ensures that cargoes are loaded at their origin and unloaded at their destination. In Saccharomyces cerevisiae, early in the cell cycle, a portion of the vacuole is transported into the emerging bud. This transport requires a myosin V motor, Myo2, which attaches to the vacuole via Vac17, the vacuole-specific adaptor protein. Vac17 also binds to Vac8, a vacuolar membrane protein. Once the vacuole is brought to the bud cortex via the Myo2-Vac17-Vac8 complex, Vac17 is degraded and the vacuole is released from Myo2. However, mechanisms governing dissociation of the Myo2-Vac17-Vac8 complex are not well understood. Ubiquitylation of the Vac17 adaptor at the bud cortex provides spatial regulation of vacuole release. Here, we report that ubiquitylation alone is not sufficient for cargo release. We find that a parallel pathway, which initiates on the vacuole, converges with ubiquitylation to release the vacuole from Myo2. Specifically, we show that Yck3 and Vps41, independent of their known roles in homotypic fusion and protein sorting (HOPS)-mediated vesicle tethering, are required for the phosphorylation of Vac17 in its Myo2 binding domain. These phosphorylation events allow ubiquitylated Vac17 to be released from Myo2 and Vac8. Our data suggest that Vps41 is regulating the phosphorylation of Vac17 via Yck3, a casein kinase I, and likely another unknown kinase. That parallel pathways are required to release the vacuole from Myo2 suggests that multiple signals are integrated to terminate organelle inheritance.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Fosforilación/fisiología , Unión Proteica , Receptores de Superficie Celular/metabolismo , Saccharomyces cerevisiae , Ubiquitinación/fisiología
17.
mBio ; 8(5)2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874471

RESUMEN

Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant.IMPORTANCE Proteins that are damaged by oxidative stress are often targeted for proteolysis by the ubiquitin-proteasome system (UPS). The mechanisms that control this response are poorly understood, especially under conditions of mild oxidative stress when protein damage is modest. Here, we discovered a novel function of archaeal MsrA in guiding the Ubl modification of target proteins in the presence of mild oxidant. This newly reported activity of MsrA is distinct from its stereospecific reduction of methionine-S-sulfoxide to methionine residues. Our results are significant steps forward, first, in elucidating a protein factor that guides Ubl modification in archaea, and second, in providing an insight into oxidative stress responses that can trigger Ubl modification in a cell.


Asunto(s)
Archaea/enzimología , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Ubiquitinas/metabolismo , Cromatografía Liquida , Dimetilsulfóxido/farmacología , Metionina/análogos & derivados , Metionina/metabolismo , Metionina Sulfóxido Reductasas/biosíntesis , Oxidantes/farmacología , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Proteolisis , Espectrometría de Masas en Tándem , Ubiquitinación , Ubiquitinas/química
18.
mBio ; 7(3)2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27190215

RESUMEN

UNLABELLED: The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP) modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover of TBP2 required the functions of UbaA (the E1/MoeB/ThiF homolog of archaea), AAA ATPases (Cdc48/p97 and Rpt types), a type 2 JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) homolog (JAMM2), and 20S proteasomes. The ubiquitin-like protein modifier small archaeal modifier protein 2 (SAMP2) stimulated the degradation of TBP2, but SAMP2 itself was not degraded. Analysis of the TBP2 fractions that were not modified by ubiquitin-like linkages revealed that TBP2 had multiple N termini, including Met1-Ser2, Ser2, and Met1-Ser2(p) [where (p) represents phosphorylation]. The evidence suggested that the Met1-Ser2(p) form accumulated in cells that were unable to degrade TBP2. We propose a model in archaea in which the attachment of ubiquitin-like tags can target proteins for degradation by proteasomes and be controlled by N-terminal degrons. In support of a proteolytic mechanism that is energy dependent and recycles the ubiquitin-like protein tags, we find that a network of AAA ATPases and a JAMM/MPN+ metalloprotease are required, in addition to 20S proteasomes, for controlled intracellular proteolysis. IMPORTANCE: This study advances the fundamental knowledge of signal-guided proteolysis in archaea and sheds light on components that are related to the ubiquitin-proteasome system of eukaryotes. In archaea, the ubiquitin-like proteasome system is found to require function of an E1/MoeB/ThiF homolog, a type 2 JAMM/MPN+ metalloprotease, and a network of AAA ATPases for the targeted destruction of proteins. We provide evidence that the attachment of the ubiquitin-like protein is controlled by an N-terminal degron and stimulates proteasome-mediated proteolysis.


Asunto(s)
Archaea/genética , Archaea/metabolismo , Proteínas Arqueales/metabolismo , Citoplasma/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Ubiquitina/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Citoplasma/química , Mutación , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Ubiquitina/genética
19.
FEBS J ; 283(19): 3567-3586, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27459543

RESUMEN

Here we provide the first detailed biochemical study of a noncanonical E1-like enzyme with broad specificity for cognate ubiquitin-like (Ubl) proteins that mediates Ubl protein modification and sulfur mobilization to form molybdopterin and thiolated tRNA. Isothermal titration calorimetry and in vivo analyses proved useful in discovering that environmental conditions, ATP binding, and Ubl type controlled the mechanism of association of the Ubl protein with its cognate E1-like enzyme (SAMP and UbaA of the archaeon Haloferax volcanii, respectively). Further analysis revealed that ATP hydrolysis triggered the formation of thioester and peptide bonds within the Ubl:E1-like complex. Importantly, the thioester was an apparent precursor to Ubl protein modification but not sulfur mobilization. Comparative modeling to MoeB/ThiF guided the discovery of key residues within the adenylation domain of UbaA that were needed to bind ATP as well as residues that were specifically needed to catalyze the downstream reactions of sulfur mobilization and/or Ubl protein modification. UbaA was also found to be Ubl-automodified at lysine residues required for early (ATP binding) and late (sulfur mobilization) stages of enzyme activity revealing multiple layers of autoregulation. Cysteine residues, distinct from the canonical E1 'active site' cysteine, were found important in UbaA function supporting a model that this noncanonical E1 is structurally flexible in its active site to allow Ubl~adenylate, Ubl~E1-like thioester and cysteine persulfide(s) intermediates to form.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Azufre/metabolismo , Enzimas Activadoras de Ubiquitina/química , Enzimas Activadoras de Ubiquitina/metabolismo , Adenosina Trifosfato/metabolismo , Cisteína/fisiología , Haloferax volcanii/enzimología , Ligandos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Compuestos de Sulfhidrilo/metabolismo , Termodinámica , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA