Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mass Spectrom Rev ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37533397

RESUMEN

This article reviews the analytical tool chest used for characterizing alkoxylates and their associated copolymer mixtures. Specific emphasis will be placed upon the use of mass spectrometry-based techniques as rapid characterization tools for optimizing reaction processes in an industrial R&D setting. An initial tutorial will cover the use of matrix-assisted laser desorption/ionization-mass spectrometry and tandem mass spectrometry fragmentation for detailed component analysis (e.g., polyol and isocyanate) of a model polyurethane-based foam. Next, this critical feedback information will be used with the guidance of mass spectrometry to initiate the development of a new, more efficient, tris(pentafluorophenyl)borane (FAB) catalyst-based alkoxylation process for generating the next generation of glycerin-initiated poly(propylene oxide)-co-poly(ethylene oxide) copolymers. Examples will be provided for each step in the FAB-based optimization process that were required to generate the final product. Following this example, two-dimensional liquid chromatography, supercritical fluid chromatography, and ion mobility separations, along with their coupling to mass spectrometry, will be reviewed for their efficiency in characterizing and quantitating the components within these complex polyether polyol mixtures.

2.
Rapid Commun Mass Spectrom ; 34 Suppl 2: e8662, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31731326

RESUMEN

RATIONALE: Commercial-grade polymer synthesis is performed via melt polymerization, which leads to polydispersion. The work reported herein provides a synthetic strategy to produce mono-dispersive polyurethane oligomers and an analytical strategy to distinguish these oligomers, providing chemists with the tools necessary to synthesize and identify specific polymer structures that exhibit a desired property. METHODS: Three isomeric poly(ethylene glycol)-polyurethane (PEG-PUR) oligomers were synthesized and analyzed via flow-injection ion mobility mass spectrometry (IM-MS). Each polymer oligomer was injected and run independently via flow injection at 100 µL•min-1 and analyzed in positive ion mode on a drift tube quadrupole time-of-flight (QTOF) instrument. Mobility measurements were determined using a single-field approach. For tandem mass spectrometry (MS/MS) experiments, the sodium-adducted singly charged precursor ion was isolated in the quadrupole and subjected to a range of collision energies. RESULTS: In MS experiments, both +1 and +2 sodium-adducted species were observed for each oligomer at m/z 837.4 and 430.2, respectively. When isolated and fragmented via MS/MS, the +1 precursor yielded distinct product ions for each of the three isomeric oligomers. Fragmentation generally occurred at urethane linkages via 1,3- and 1,5-H shift mechanisms. IM was also used to distinguish the three isomers, with greater IM separation observed for the +2 versus the +1 species. CONCLUSIONS: Mono-disperse PEG-PUR oligomers were synthesized and analyzed. Although the polymeric oligomers analyzed in this study are quite small and structurally simple, this work serves as a model system for the synthesis and structural characterization of larger, more complex block copolymers.

3.
Polymer (Guildf) ; 1812019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-32831406

RESUMEN

This review covers the applications of mass spectrometry (MS) and its hyphenated techniques to characterize polyurethane (PU) synthetic polymers and their respective hard and soft segments. PUs are commonly composed of hard segments including methylene bisphenyl diisocyanate (MDI) and toluene diisocyanate (TDI), and soft segments including polyester and polyether polyols. This literature review highlights MS techniques such as electrospray ionization (ESI), matrix assisted laser/desorption ionization (MALDI), ion mobility-mass spectrometry (IM-MS), and computational methods that have been used for the characterization of this polymer system. Here we review specific case studies where MS techniques have elucidated unique features pertaining to the makeup and structural integrity of complex PU materials and PU precursors.

4.
Polymer (Guildf) ; 173: 58-65, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31839686

RESUMEN

Polyurethane (PU) di-block copolymers are one of the most versatile polymeric materials, comprised of hard and soft segments that contribute to PU's broad range of applications. Polybutylene adipate (PBA) is a commonly used soft segment in PU systems. Characterizing the structure of PBA polymers is essential to understanding complex heterogeneity within a PU sample. In this study, ion mobility-mass spectrometry (IM-MS) and tandem mass spectrometry (MS/MS) are used to structurally characterize a PBA standard (Mn = 2250) adducted with a combination of monovalent alkali cations (Li, Na, K, Rb, and Cs). IM-MS profiles show unique trends associated with each cation-adducted PBA sample. Charge state trends: +1, +2, and +3 were extracted for cation-adducted PBA oligomers, and investigated to study gas-phase transitional folding. To quantitatively assess the gas-phase structural similarities and differences, a statistical test (ANOVA) was used to compare PBA oligomer-cation collisional cross sections (CCS). Fragmentation studies (MS/MS) identified the unique behavior of Li and Na for promoting 1,5 H-shift and 1,3 H-shift fragmentation, whereas the PBA precursor preferentially loses the larger K, Rb, and Cs cations as the ion activation energy is increased. The combination of adducted alkali cations, IM-MS, and MS/MS allow for unique structural characterization of this important PBA system.

5.
Anal Chem ; 90(24): 14453-14461, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30479133

RESUMEN

Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is used to characterize methylenedianiline (MDA) 3-ring and 4-ring species. Building on our previous MALDI-MS 2-ring MDA isomer study, here we compare 3-ring and 4-ring electrospray ionization (ESI) and MALDI results. In ESI, 3-ring and 4-ring MDAs each form a single [M + H]+ parent ion. However, in MALDI, each MDA multimer forms three unique precursor ions: [M + H]+, [M•]+, and [M - H]+. In this study, 3-ring and 4-ring MDA precursors are characterized to identify the unique fragment ions formed and their respective fragmentation pathways. In addition to the three possible precursors, the 3-ring and 4-ring species are higher-order oligomer precursors in polyurethane (PUR) production and thus provide additional insight into the polymeric behavior of these PUR hard block precursors. The combination of ion mobility-mass spectrometry (IM - MS) and tandem mass spectrometry (MS/MS) allow the structural characterization of these larger MDA multimers.


Asunto(s)
Compuestos de Anilina/química , Espectrometría de Movilidad Iónica , Espectrometría de Masas en Tándem , Estereoisomerismo
6.
Anal Chem ; 89(18): 9900-9910, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28803462

RESUMEN

Characterization of methylenedianiline (MDA) 2-ring isomers (2,2'-, 2,4'-, and 4,4'-MDA) is reported using matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS), a common technique used for characterizing synthetic polymers. MDA is a precursor to methylene diphenyl diisocyanate (MDI), a hard block component in polyurethane (PUR) synthesis. This work focuses on comparing MALDI results to those of our previous electrospray ionization-mass spectrometry (ESI-MS) studies. In ESI, 2-ring MDA isomers formed single unique [M + H]+ (199 Da) parent ions, whereas in MALDI each isomer shows significant formation of three precursor ions: [M - H]+ = 197 Da, [M•]+ = 198 Da, and [M + H]+ = 199 Da. Structures and schemes are proposed for the MALDI fragment ions associated with each precursor ion. Ion mobility-mass spectrometry (IM-MS), tandem mass spectrometry (MS/MS), and computational methods were all critical in determining the structures for both precursor and fragment ions as well as the fragmentation mechanisms. The present study indicates that the [M - H]+ and [M•]+ ions are formed by the MALDI process, explaining why they were not observed with ESI.


Asunto(s)
Compuestos de Anilina/química , Teoría Funcional de la Densidad , Simulación de Dinámica Molecular , Espectrometría de Movilidad Iónica , Espectrometría de Masas , Estructura Molecular , Estereoisomerismo
7.
Anal Bioanal Chem ; 408(3): 677-81, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26637218

RESUMEN

In various polymerization processes, the formation of a wide variety of chains, not only in length but also in chemical composition, broadly complicates comprehensive polymer characterization. In this communication, we compare different stationary and mobile phases for the analysis of complex polymer mixtures via size-exclusion chromatography-mass spectrometry (SEC-MS). To the best of our knowledge, we report novel chromatographic effects for the separation of linear and cyclic oligomers for polyesters (PE) and polyurethanes (PUR). A complete separation for the different structures was achieved for both polymer types with a single-solvent system (acetonitrile, ACN) and without extensive optimization. Additionally, cyclic species were found to show an inverse elution profile compared to their linear counterparts, suggesting distinct physical properties between species.


Asunto(s)
Cromatografía en Gel/métodos , Poliésteres/química , Poliuretanos/química , Espectrometría de Masas , Estructura Molecular
8.
Anal Chem ; 87(12): 6288-96, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-25971782

RESUMEN

Building on results from our previous study of 2-ring methylenedianiline (MDA), a combined mass spectrometry approach utilizing ion mobility-mass spectrometry (IM-MS) and tandem mass spectrometry (MS/MS) coupled with computational methods enables the structural characterization of purified 3-ring and 4-ring MDA regioisomers in this current study. The preferred site of protonation for the 3-ring and 4-ring MDA was determined to be on the amino groups. Additionally, the location of the protonated amine along the MDA multimer was found to influence the gas phase stability of these molecules. Fragmentation mechanisms similar to the 2-ring MDA species were observed for both the 3-ring and 4-ring MDA. The structural characterization of 3-ring and 4-ring MDA isomers using modern MS techniques may aid polyurethane synthesis by the characterization of industrial grade MDA, multimeric MDA species, and methylene diphenyl diisocyanate (MDI) mixtures.


Asunto(s)
Compuestos de Anilina/química , Simulación por Computador , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo , Espectrometría de Masas en Tándem
9.
Polymer (Guildf) ; 64: 100-111, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26195848

RESUMEN

MALDI-TOF/TOF collision-induced dissociation (CID) experiments were conducted on model aromatic polyester oligomers. CID fragmentation studies identified initial fracture of the ester bond and subsequent CO loss as a major pathway, consistent with the general fragmentation mechanism used to explain the origin of poly(p-phenylenediamine terephthalamide) (PPD-T) fragment ions. Specifically, both charge-remote and charge-site fragmentation were observed. Different parent-ion species were observed, the major ones being carboxyl-hydroxyl, di-carboxyl, di-hydroxyl, and phenyl-carboxyl terminated. One species observed was hydroxyl-diethylamine terminated caused by reaction of carboxyl groups with triethylamine added to the synthesis reaction mixture. Fragment ions reflected the end groups of the parent oligomers. Some MALDI fragment-ion spectra were obtained for species showing exchange between Li and H at the carboxyl end group. Bond energy calculations provide further insight into suggested fragmentation mechanisms.

10.
Anal Chem ; 86(9): 4362-70, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24678803

RESUMEN

Purified methylenedianiline (MDA) regioisomers were structurally characterized and differentiated using tandem mass spectrometry (MS/MS), ion mobility-mass spectrometry (IM-MS), and IM-MS/MS in conjunction with computational methods. It was determined that protonation sites on the isomers can vary depending on the position of amino groups, and the resulting protonation sites play a role in the gas-phase stability of the isomer. We also observed differences in the relative distributions of protonated conformations depending on experimental conditions and instrumentation, which is consistent with previous studies on aniline in the gas phase. This work demonstrates the utility of a multifaceted approach for the study of isobaric species and elucidates why previous MDA studies may have been unable to detect and/or differentiate certain isomers. Such analysis may prove useful in the characterization of larger MDA multimeric species, industrial MDA mixtures, and methylene diphenyl diisocyanate (MDI) mixtures used in polyurethane synthesis.

11.
Anal Bioanal Chem ; 396(4): 1481-90, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20043221

RESUMEN

In the present study, we address the possibility of matrix-assisted laser desorption/ionization (MALDI)-time-of-flight MS analysis-induced chain fragmentation in poly(p-phenylene terephthalamide) (PPD-T) by considering two possible sources: (1) grinding-induced fragmentation resulting from the evaporation-grinding MALDI sample preparation method (E-G method) and (2) in-source/metastable fragmentation induced by the MALDI laser. An analysis of variance (ANOVA) statistical study found, with a high probability, that obtaining MALDI spectra with the effective laser area as large as possible (the "fanned-out" setting) did not cause any chain fragmentation due to the E-G MALDI sample preparation method, even when three additional grinding steps were used. However, the effect of laser fluence was less clear. A significant effect of laser fluence was observed for lower mass oligomers (<1,400 Da), but there was essentially no effect for higher mass species up to our limit of ANOVA measurement (approximately 2,300 Da). Plausible explanations are presented to explain these observations. The most likely scenario is that "unexpected" end-group modifications occur during PPD-T synthesis, producing small quantities of low mass species, which are amplified by the MALDI-EG extraction procedure.

12.
Anal Bioanal Chem ; 392(4): 609-26, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18537031

RESUMEN

MALDI-TOF/TOF CID experiments were conducted on a variety of hydrogen-terminated poly(4-methylstyrene), hydroxylated poly(t-butylstyrene), and polystyrene precursor ions: n = 10, 15, 20, 25, and 30, where the number of repeat units n corresponds to the oligomer mass number. The influences of structure, molecular weight, and effective collision kinetic energy on degradation mechanisms were examined to test the generality of our multi-chain fragmentation model developed for polystyrene. Each depolymerization mechanism is presented in detail with experimental and computational data to justify/rationalize its occurrence and effective kinetic energy dependence. These processes show the complex interrelationship between the various pathways along with preferred production of secondary radicals, which suppresses the appearance of primary radicals. Additionally, Py-GC/MS experimental data are presented, for comparison of the multimolecular free radical reactions in pyrolysis with the unimolecular fragmentation reactions of MS/MS.

13.
Anal Bioanal Chem ; 392(4): 627-42, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18709363

RESUMEN

MALDI-TOF/TOF CID experiments are reported for hydroxylated poly(alpha-methylstyrene) precursor ions (PAMS: m/z 1,445.9 (n = 10), 2,036.3 (n = 15), 2,626.7 (n = 20), 3,217.1 (n = 25), and 3,807.5 (n = 30), where the number of repeat units n corresponds to the oligomer mass numbers). The influences of structure, molecular weight, and kinetic energy on degradation mechanisms were examined to test the generality of our multi-chain fragmentation model developed for polystyrene. Our results indicate that poly(alpha-methylstyrene) free radicals are formed initially through multiple chain breaks and subsequently undergo a variety of depolymerization reactions to yield predominantly monomer and dimer species; the intensity of each species depends on the effective kinetic energy selected for the CID process. Each depolymerization mechanism is presented in detail with experimental and computational data to justify/rationalize the process and its kinetic energy dependence. These processes show the complex interrelationships between the various pathways along with preferred production of tertiary radicals, which suppresses the appearance of primary radicals. Additionally, Py-GC/MS experimental data are presented to allow a comparison of the multimolecular free radical reactions in pyrolysis with the unimolecular fragmentation reactions of MS/MS.

14.
J Nanosci Nanotechnol ; 4(7): 809-16, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15570964

RESUMEN

Pt-Re/Vulcan carbon powder nanocomposites have been prepared with total metal loadings of 18 wt.% and 40 wt.% using a new non-cluster (1:1)-PtRe bimetallic precursor as the source of metal. Pt-Re nanoparticles having an average diameter of ca. 6 nm and atomic stoichiometry near 1:1 are formed. TEM, on-particle HR-EDS, and powder XRD data are consistent with the formation of Pt-Re alloy nanoparticles having a hexagonal unit cell with cell constants of a = 2.77 A and c = 4.47 A. A nanocomposite prepared at higher total metal loading under more rigorous thermal treatment also contains Pt-Re alloy nanoparticles having a fcc unit cell structure (a = 3.95 A). The precise dependence of Pt-Re nanocrystal structure on the thermal history of the nanocomposite specimen has not been investigated in detail. While these Pt-Re/carbon nanocomposites are active as anode catalysts in operating direct methanol fuel cells, the measured performance is less than that of commercial Pt-Ru/carbon catalysts and has marginal practical importance.


Asunto(s)
Metanol/química , Nanotecnología/métodos , Nanotubos de Carbono/química , Oxígeno/química , Platino (Metal)/química , Renio/química , Aleaciones , Carbono/química , Catálisis , Suministros de Energía Eléctrica , Electroquímica , Electrodos , Calor , Microscopía Electrónica de Transmisión , Modelos Químicos , Temperatura , Difracción de Rayos X
15.
Anal Chim Acta ; 808: 199-219, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24370105

RESUMEN

A combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) collision induced dissociation (CID) and ion mobility separations (IMS) was used to study a complex mixture composed of unreacted polyester starting material (polybutylene adipate) and polyurethane (PUR) end products. Collision induced dissociation fragmentation identified two primary fragmentation mechanisms of PURs, which were used to generate a general fragmentation model. Predicted fragment ions were used to distinguish: (1) linear and cyclic PURs, (2) hard-block and soft-block PURS, (3) the degree of "blockiness" within hard- and soft-block PURs, (4) the location of the MDI linkages within each PUR chain, and (5) the relative intensities of various isobars intermingled within a precursor mass peak. These results were consistent with the observed IMS separations.

16.
Anal Chim Acta ; 808: 124-43, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24370099

RESUMEN

MALDI-TOF/TOF collision-induced dissociation (CID) experiments are reported on model poly(p-phenylenediamine terephthalamide) (PPD-T) polymers, revealing a variety of synthesis reaction products. Diamine-terminated oligomers were the major product of synthesis using excess amine, and di-carboxylic acid oligomers were the major product for excess acid. Structures of major reaction products were confirmed by CID fragmentation studies, along with detailed studies of MS/MS decomposition pathways. Apparent fracture of the phenylcarbonyl bond was the major fragmentation pathway (independent of end groups), resulting from initial NHCO bond cleavage with subsequent CO loss. Hydrogen-transfer reactions play an important role in fragmentation, involving both cross-chain abstraction of NH hydrogen and long-range H-transfer. End-group and main-chain modifications produce fingerprint CID fragmentation patterns that can be used to identify end groups and branching patterns; the structure of an unanticipated synthesis product was established using CID. The effect of synthesis conditions on polymer composition was studied using the analysis of variance, specifically, the amine-to-acid ratio used and post-synthesis addition of CaO. Of particular interest is oligomer end-group modification by the solvent (N-methyl pyrrolidone) induced by addition of CaO.

17.
Anal Bioanal Chem ; 392(4): 571-3, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18677618
18.
J Am Chem Soc ; 129(5): 1095-104, 2007 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-17263390

RESUMEN

Electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS) and gel permeation chromatography (GPC) were used to study the synthesis of a series of tiopronin monolayer-protected gold nanoclusters (MPCs) and to monitor their postsynthesis peptide ligand place-exchange reactions. All mass spectra identified the presence of cyclic gold(I)-thiolates with a strong preference for tetrameric species. During the synthesis of pre-monolayer-protected nanoclusters (pre-MPCs), esterified gold(I)-thiolate tetramers were initially observed in minor abundance (with respect to disulfide bridged tiopronin species) before dramatically increasing in abundance and precipitating from solution. After conversion of pre-MPCs to MPCs, ESI-TOF mass spectra demonstrated an overall predominance of tetrameric species with conversion from ester-terminated end groups to carboxyl-terminated end groups. Further modifications were performed through postsynthesis ligand place-exchange reactions to validate the existence of the tetramers. This work suggests that monolayer protection is accomplished by cyclized gold(I)-thiolate tetramers on the gold core surface, and/or that gold(I)-thiolates are a basic building block within the nanoparticles.


Asunto(s)
Oro/química , Nanoestructuras/química , Nanotecnología , Tiopronina/química , Cromatografía en Gel/métodos , Ligandos , Compuestos Organometálicos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
19.
Bioorg Med Chem Lett ; 17(20): 5656-60, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17766114

RESUMEN

Quantum dots consisting of a cadmium selenide core encapsulated in a shell of cadmium doped zinc sulfide have the potential to revolutionize fluorescent imaging of live cell cultures. In order to utilize these fluorescent probes it is necessary to functionalize them with biologically active ligands. In this paper we report the design and synthesis of a ligand that has a high affinity for the serotonin transporter (SERT) that may be conjugated to quantum dots.


Asunto(s)
Indoles/farmacología , Polietilenglicoles/química , Puntos Cuánticos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Indoles/síntesis química , Indoles/química , Concentración 50 Inhibidora , Ligandos , Estructura Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
Bioorg Med Chem Lett ; 16(24): 6262-6, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17000112

RESUMEN

Biologically active small molecule derivatives that can be conjugated to quantum dots have the promise of revolutionizing fluorescent imaging in biology. In order to achieve this several technical hurdles have to be surmounted, one of which is non-specific adsorption of quantum dots to cell membranes. Pegylating quantum dots has been shown to eliminate non-specific binding. Consequently it is necessary to develop a universal synthetic methodology to attach small molecule ligands to polyethylene glycol. These pegylated small molecules may then be conjugated to the surfaces of quantum dots. Ideally this universal strategy should be adaptable and be applicable to PEG chains of varying lengths. This paper describes the development of one such methodology and the synthesis of a pegylated derivative of the known 5HT(2) agonist 1-(2-aminopropyl)-2,5-dimethoxy benzene. This compound was tested and found to be an agonist for the 5HT(2A) and 5HT(2C) receptor having EC(50) values of 250 and 50 nM, respectively.


Asunto(s)
Polietilenglicoles , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Membrana Celular/fisiología , Ligandos , Teoría Cuántica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA