Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35335525

RESUMEN

The influence of carbon black (CB) structure and surface area on key rubber properties such as monotonic stress-strain, cyclic stress-strain, and dynamic mechanical behaviors are investigated in this paper. Natural rubber compounds containing eight different CBs were examined at equivalent particulate volume fractions. The CBs varied in their surface area and structure properties according to a wide experimental design space, allowing robust correlations to the experimental data sets to be extracted. Carbon black structure plays a dominant role in defining the monotonic stress-strain properties (e.g., secant moduli) of the compounds. In line with the previous literature, this is primarily due to strain amplification and occluded rubber mechanisms. For cyclic stress-strain properties, which include the Mullins effect and cyclic softening, the observed mechanical hysteresis is strongly correlated with carbon black structure, which implies that hysteretic energy dissipation at medium to large strain values is isolated in the rubber matrix and arises due to matrix overstrain effects. Under small to medium dynamic strain conditions, classical strain dependence of viscoelastic moduli is observed (the Payne effect), the magnitude of which varies dramatically and systematically depending on the colloidal properties of the CB. At low strain amplitudes, both CB structure and surface area are positively correlated to the complex moduli. Beyond ~2% strain amplitude the effect of surface area vanishes, while structure plays an increasing and eventually dominant role in defining the complex modulus. This transition in colloidal correlations reflects the transition in stiffening mechanisms from flexing of rigid percolated particle networks at low strains to strain amplification at medium to high strains. By rescaling the dynamic mechanical data sets to peak dynamic stress and peak strain energy density, the influence of CB colloidal properties on compound hysteresis under strain, stress, and strain energy density control can be estimated. This has considerable significance for materials selection in rubber product development.

2.
Polymers (Basel) ; 12(1)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941088

RESUMEN

Undispersed filler agglomerates or other substantial inclusions/contaminants in rubber can act as large crack precursors that reduce the strength and fatigue lifetime of the material. To demonstrate this, we use tensile strength (stress at break, σb) data from 50 specimens to characterize the failure distribution behavior of carbon black (CB) reinforced styrene-butadiene rubber (SBR) compounds. Poor mixing was simulated by adding a portion of the CB late in the mixing process, and glass beads (microspheres) with 517 µm average diameter were introduced during milling to reproduce the effects of large inclusions. The σb distribution was well described with a simple unimodal Weibull distribution for the control compound, but the tensile strengths of the poor CB dispersion material and the compounds with the glass beads required bimodal Weibull distributions. For the material with the lowest level of glass beads-corresponding to less than one microsphere per test specimen-the bimodal failure distribution spanned a very large range of σb from 13.7 to 22.7 MPa in contrast to the relatively narrow σb distribution for the control from 18.4 to 23.8 MPa. Crack precursor size (c0) distributions were also inferred from the data, and the glass beads introduced c0 values in the 400 µm range compared to about 180 µm for the control. In contrast to σb, critical tearing energy (tear strength) was unaffected by the presence of the CB agglomerates and glass beads, because the strain energy focuses on the pre-cut macroscopic crack in the sample during tear testing rather than on the microscopic crack precursors within the rubber. The glass beads were not detected by conventional filler dispersion measurements using interferometric microscopy, indicating that tensile strength distribution characterization is an important complementary approach for identifying the presence of minor amounts of large inclusions in rubber.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA