Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(31): E7438-E7447, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012612

RESUMEN

Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with ß-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2 A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases.


Asunto(s)
Dolor Crónico/etiología , Endosomas/fisiología , Síndrome del Colon Irritable/fisiopatología , Receptor PAR-2/fisiología , Transducción de Señal/fisiología , Animales , Endocitosis , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Humanos , Nocicepción , Nociceptores/fisiología , Tripsina/farmacología
2.
Sci Transl Med ; 9(392)2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28566424

RESUMEN

Typically considered to be cell surface sensors of extracellular signals, heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) control many pathophysiological processes and are the target of 30% of therapeutic drugs. Activated receptors redistribute to endosomes, but researchers have yet to explore whether endosomal receptors generate signals that control complex processes in vivo and are viable therapeutic targets. We report that the substance P (SP) neurokinin 1 receptor (NK1R) signals from endosomes to induce sustained excitation of spinal neurons and pain transmission and that specific antagonism of the NK1R in endosomes with membrane-anchored drug conjugates provides more effective and sustained pain relief than conventional plasma membrane-targeted antagonists. Pharmacological and genetic disruption of clathrin, dynamin, and ß-arrestin blocked SP-induced NK1R endocytosis and prevented SP-stimulated activation of cytosolic protein kinase C and nuclear extracellular signal-regulated kinase, as well as transcription. Endocytosis inhibitors prevented sustained SP-induced excitation of neurons in spinal cord slices in vitro and attenuated nociception in vivo. When conjugated to cholestanol to promote endosomal targeting, NK1R antagonists selectively inhibited endosomal signaling and sustained neuronal excitation. Cholestanol conjugation amplified and prolonged the antinociceptive actions of NK1R antagonists. These results reveal a critical role for endosomal signaling of the NK1R in the complex pathophysiology of pain and demonstrate the use of endosomally targeted GPCR antagonists.


Asunto(s)
Endosomas/metabolismo , Terapia Molecular Dirigida , Nocicepción , Dolor/tratamiento farmacológico , Receptores de Neuroquinina-1/metabolismo , Transducción de Señal , Animales , Compartimento Celular , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Lípidos/química , Modelos Biológicos , Antagonistas del Receptor de Neuroquinina-1/farmacología , Antagonistas del Receptor de Neuroquinina-1/uso terapéutico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Nocicepción/efectos de los fármacos , Dolor/patología , Unión Proteica/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Médula Espinal/patología , Fracciones Subcelulares/metabolismo , Sustancia P/metabolismo , beta-Arrestinas/metabolismo
3.
J Med Chem ; 58(3): 1550-5, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25590655

RESUMEN

Herein we describe the hybridization of a benzoxazinone M1 scaffold with D2 privileged structures derived from putative and clinically relevant antipsychotics to develop designed multiple ligands. The M1 mAChR is an attractive target for the cognitive deficits in key CNS disorders. Moreover, activity at D2 and 5-HT2A receptors has proven useful for antipsychotic efficacy. We identified 9 which retained functional activity at the target M1 mAChR and D2R and demonstrated high affinity for the 5-HT2AR.


Asunto(s)
Benzoxazinas/farmacología , Antagonistas de los Receptores de Dopamina D2/farmacología , Diseño de Fármacos , Receptor Muscarínico M1/antagonistas & inhibidores , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Dopamina D2/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Benzoxazinas/síntesis química , Benzoxazinas/química , Antagonistas de los Receptores de Dopamina D2/síntesis química , Antagonistas de los Receptores de Dopamina D2/química , Relación Dosis-Respuesta a Droga , Ligandos , Estructura Molecular , Receptor Muscarínico M1/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/síntesis química , Antagonistas del Receptor de Serotonina 5-HT2/química , Relación Estructura-Actividad
4.
J Med Chem ; 56(22): 9199-221, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24138311

RESUMEN

Biased agonism offers an opportunity for the medicinal chemist to discover pathway-selective ligands for GPCRs. A number of studies have suggested that biased agonism at the dopamine D2 receptor (D2R) may be advantageous for the treatment of neuropsychiatric disorders, including schizophrenia. As such, it is of great importance to gain insight into the SAR of biased agonism at this receptor. We have generated SAR based on a novel D2R partial agonist, tert-butyl (trans-4-(2-(3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)carbamate (4). This ligand shares structural similarity to cariprazine (2), a drug awaiting FDA approval for the treatment of schizophrenia, yet displays a distinct bias toward two different signaling end points. We synthesized a number of derivatives of 4 with subtle structural modifications, including incorporation of cariprazine fragments. By combining pharmacological profiling with analytical methodology to identify and to quantify bias, we have demonstrated that efficacy and biased agonism can be finely tuned by minor structural modifications to the head group containing the tertiary amine, a tail group that extends away from this moiety, and the orientation and length of a spacer region between these two moieties.


Asunto(s)
Receptores de Dopamina D2/agonistas , Animales , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/química , Isoquinolinas/metabolismo , Isoquinolinas/farmacología , Simulación del Acoplamiento Molecular , Conformación Proteica , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA