Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biochem Biophys Res Commun ; 606: 149-155, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35358839

RESUMEN

The coupling of bone resorption and bone formation is well-recognized in the bone remodeling process, in which osteoblasts and osteoclasts are key players. However, the anabolic effect of human primary osteoclasts has rarely been reported as mouse and cell line derived osteoclasts were mostly used in previous reports. Therefore, a comprehensive comparison of mouse and human osteoclasts and their corresponding functions is needed to study cell-cell interactions between osteoclasts and osteoblasts. Osteoclasts from mouse and human origin were generated, characterized and compared, after which their anabolic effects on the osteogenic differentiation of mouse and human MSCs were assessed. Both murine RAW264.7 derived osteoclasts (mOCs) and primary human osteoclasts (hOCs) derived from buffy coats characteristically displayed multinuclearity, marked integrin ß3 expression and enhanced TRAP activity. Despite comparable cell size, mOCs showed higher osteoclast density (number of osteoclasts per cm2 culture dish) and osteoclast nuclearity (average number of nuclei per osteoclast), but lower TRAP activity compared to hOCs. Culturing primary rat and human bone marrow MSCs with the conditioned medium of mOCs or hOCs showed anabolic effects regarding the osteogenic differentiation of MSCs with superiority of hOCs over mOCs. We conclude that despite morphological and functional differences between mouse and human osteoclasts, their secretory factors evoke similar anabolic effects on MSC osteogenic differentiation.


Asunto(s)
Anabolizantes , Resorción Ósea , Anabolizantes/metabolismo , Anabolizantes/farmacología , Animales , Resorción Ósea/metabolismo , Diferenciación Celular , Ratones , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Ratas
2.
Cancer Immunol Immunother ; 70(11): 3167-3181, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33796917

RESUMEN

Allogeneic stem cell transplantation (alloSCT), following induction chemotherapy, can be curative for hemato-oncology patients due to powerful graft-versus-tumor immunity. However, disease recurrence remains the major cause of treatment failure, emphasizing the need for potent adjuvant immunotherapy. In this regard, dendritic cell (DC) vaccination is highly attractive, as DCs are the key orchestrators of innate and adaptive immunity. Natural DC subsets are postulated to be more powerful compared with monocyte-derived DCs, due to their unique functional properties and cross-talk capacity. Yet, obtaining sufficient numbers of natural DCs, particularly type 1 conventional DCs (cDC1s), is challenging due to low frequencies in human blood. We developed a clinically applicable culture protocol using donor-derived G-CSF mobilized CD34+ hematopoietic progenitor cells (HPCs) for simultaneous generation of high numbers of cDC1s, cDC2s and plasmacytoid DCs (pDCs). Transcriptomic analyses demonstrated that these ex vivo-generated DCs highly resemble their in vivo blood counterparts. In more detail, we demonstrated that the CD141+CLEG9A+ cDC1 subset exhibited key features of in vivo cDC1s, reflected by high expression of co-stimulatory molecules and release of IL-12p70 and TNF-α. Furthermore, cDC1s efficiently primed alloreactive T cells, potently cross-presented long-peptides and boosted expansion of minor histocompatibility antigen-experienced T cells. Moreover, they strongly enhanced NK cell activation, degranulation and anti-leukemic reactivity. Together, we developed a robust culture protocol to generate highly functional blood DC subsets for in vivo application as tailored adjuvant immunotherapy to boost innate and adaptive anti-tumor immunity in alloSCT patients.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Dendríticas/inmunología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Células Asesinas Naturales/inmunología , Linfocitos T/inmunología , Presentación de Antígeno/inmunología , Antígenos CD34 , Reactividad Cruzada/inmunología , Humanos , Activación de Linfocitos/inmunología
3.
Mol Cancer Ther ; 22(6): 765-777, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37042205

RESUMEN

MET, the cell-surface receptor for the hepatocyte growth factor/scatter factor, which is widely overexpressed in various solid cancer types, is an attractive target for the development of antibody-based therapeutics. BYON3521 is a novel site-specifically conjugated duocarmycin-based antibody-drug conjugate (ADC), comprising a humanized cysteine-engineered IgG1 monoclonal antibody with low pmol/L binding affinity towards both human and cynomolgus MET. In vitro studies showed that BYON3521 internalizes efficiently upon MET binding and induces both target- and bystander-mediated cell killing. BYON3521 showed good potency and full efficacy in MET-amplified and high MET-expressing cancer cell lines; in moderate and low MET-expressing cancer cell lines good potencies and partial efficacy were observed. In mouse xenograft models, BYON3521 showed significant antitumor activity upon single-dose administration in multiple non-MET-amplified tumor types with low, moderate, and high MET expression, including complete tumor remissions in models with moderate MET expression. In the repeat-dose Good Laboratory Practice (GLP) safety assessment in cynomolgus monkeys, BYON3521 was well tolerated and based on the observed toxicities and their reversibility, the highest non-severely toxic dose was set at 15 mg/kg. A human pharmacokinetics (PK) model was derived from the PK data from the cynomolgus safety assessments, and the minimal efficacious dose in humans is estimated to be in the range of 3 to 4 mg/kg. In all, our nonclinical data suggests that BYON3521 is a safe ADC with potential for clinical benefit in patients. A first-in-human dose-escalation study is currently ongoing to determine the maximum tolerated dose and recommended dose for expansion (NCT05323045).


Asunto(s)
Anticuerpos Monoclonales , Inmunoconjugados , Animales , Humanos , Ratones , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Inmunoglobulina G , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA