Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Periodontol 2000 ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923566

RESUMEN

The survival of an organism relies on its ability to repair the damage caused by trauma, toxic agents, and inflammation. This process involving cell proliferation and differentiation is driven by several growth factors and is critically dependent on the organization of the extracellular matrix. Since autologous platelet concentrates (APCs) are fibrin matrices in which cells, growth factors, and cytokines are trapped and delivered over time, they are able to influence that response at different levels. The present review thoroughly describes the molecular components present in one of these APCs, leukocyte- and platelet-rich fibrin (L-PRF), and summarizes the level of evidence regarding the influence of L-PRF on anti-inflammatory reactions, analgesia, hemostasis, antimicrobial capacity, and its biological mechanisms on bone/soft tissue regeneration.

2.
Arterioscler Thromb Vasc Biol ; 41(1): 478-490, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147989

RESUMEN

OBJECTIVE: Obesity is associated with a proinflammatory and prothrombotic state that supports atherosclerosis progression. The goal of this study was to gain insights into the phosphorylation events related to platelet reactivity in obesity and identify platelet biomarkers and altered activation pathways in this clinical condition. Approach and Results: We performed a comparative phosphoproteomic analysis of resting platelets from obese patients and their age- and gender-matched lean controls. The phosphoproteomic data were validated by mechanistic, functional, and biochemical assays. We identified 220 differentially regulated phosphopeptides, from at least 175 proteins; interestingly, all were up-regulated in obesity. Most of the altered phosphoproteins are involved in SFKs (Src-family kinases)-related signaling pathways, cytoskeleton reorganization, and vesicle transport, some of them validated by targeted mass spectrometry. To confirm platelet dysfunction, flow cytometry assays were performed in whole blood indicating higher surface levels of GP (glycoprotein) VI and CLEC (C-type lectin-like receptor) 2 in platelets from obese patients correlating positively with body mass index. Receiver operator characteristics curves analysis suggested a much higher sensitivity for GPVI to discriminate between obese and lean individuals. Indeed, we also found that obese platelets displayed more adhesion to collagen-coated plates. In line with the above data, soluble GPVI levels-indicative of higher GPVI signaling activation-were almost double in plasma from obese patients. CONCLUSIONS: Our results provide novel information on platelet phosphorylation changes related to obesity, revealing the impact of this chronic pathology on platelet reactivity and pointing towards the main signaling pathways dysregulated.


Asunto(s)
Plaquetas/metabolismo , Proteínas Sanguíneas/metabolismo , Obesidad/sangre , Fosfoproteínas/sangre , Activación Plaquetaria , Proteómica , Transducción de Señal , Adulto , Índice de Masa Corporal , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/diagnóstico , Fosforilación , Índice de Severidad de la Enfermedad , Regulación hacia Arriba
3.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35955459

RESUMEN

Obesity is associated with a pro-inflammatory and pro-thrombotic state that supports atherosclerosis progression and platelet hyper-reactivity. During the last decade, the platelet lipidome has been considered a treasure trove, as it is a source of biomarkers for preventing and treating different pathologies. The goal of the present study was to determine the lipid profile of platelets from non-diabetic, severely obese patients compared with their age- and sex-matched lean controls. Lipids from washed platelets were isolated and major phospholipids, sphingolipids and neutral lipids were analyzed either by gas chromatography or by liquid chromatography coupled to mass spectrometry. Despite a significant increase in obese patient's plasma triglycerides, there were no significant differences in the levels of triglycerides in platelets among the two groups. In contrast, total platelet cholesterol was significantly decreased in the obese group. The profiling of phospholipids showed that phosphatidylcholine and phosphatidylethanolamine contents were significantly reduced in platelets from obese patients. On the other hand, no significant differences were found in the sphingomyelin and ceramide levels, although there was also a tendency for reduced levels in the obese group. The outline of the glycerophospholipid and sphingolipid molecular species (fatty-acyl profiles) was similar in the two groups. In summary, these lipidomics data indicate that platelets from obese patients have a unique lipid fingerprint that may guide further studies and provide mechanistic-driven perspectives related to the hyperactivate state of platelets in obesity.


Asunto(s)
Lipidómica , Fosfolípidos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Obesidad , Esfingolípidos , Triglicéridos
4.
Proteomics ; 21(13-14): e2000089, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33754471

RESUMEN

In transfusion centres, blood components are divided and stored following specific guidelines. The storage temperature and time vary among the blood cells but all of them release extracellular vesicles (EVs) under blood bank conditions. The clinical impact of such vesicles in blood components for transfusion is an object of debate, but should be considered and is being investigated. In this context, proteomics is an excellent tool to study the cargo and composition of EVs derived from red blood cells and platelets, since such vesicles are enriched in lipids and proteins. The development of quantitative mass spectrometry techniques and the evolution of bioinformatics have allowed the identification of novel EVs biomarkers for different diseases. In this context, the application of high coverage proteomic tools to the analysis of EVs in the transfusion medicine field would provide information about storage lesions and possible transfusion adverse reactions. This viewpoint article approaches the potential of proteomics to investigate the impact of EVs in blood bank transfusion components, especially red blood cells and platelets.


Asunto(s)
Vesículas Extracelulares , Medicina Transfusional , Biomarcadores , Plaquetas , Proteómica
5.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804911

RESUMEN

BACKGROUND: Clinical management of ischemic events and prevention of vascular disease is based on antiplatelet drugs. Given the relevance of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) as a candidate target in thrombosis, the main goal of the present study was to identify novel antiplatelet agents within the existing inhibitors blocking PI3K isoforms. METHODS: We performed a biological evaluation of the pharmacological activity of PI3K inhibitors in platelets. The effect of the inhibitors was evaluated in intracellular calcium release and platelet functional assays, the latter including aggregation, adhesion, and viability assays. The in vivo drug antithrombotic potential was assessed in mice undergoing chemically induced arterial occlusion, and the associated hemorrhagic risk evaluated by measuring the tail bleeding time. RESULTS: We show that PI3K Class IA inhibitors potently block calcium mobilization in human platelets. The PI3K p110δ inhibitor Idelalisib inhibits platelet aggregation mediated by ITAM receptors GPVI and CLEC-2, preferentially by the former. Moreover, Idelalisib also inhibits platelet adhesion and aggregation under shear and adhesion to collagen. Interestingly, an antithrombotic effect was observed in mice treated with Idelalisib, with mild bleeding effects at high doses of the drug. CONCLUSION: Idelalisib may have antiplatelet effects with minor bleeding effects, which provides a rationale to evaluate its antithrombotic efficacy in humans.


Asunto(s)
Plaquetas/efectos de los fármacos , Fibrinolíticos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Quinazolinonas/farmacología , Trombosis/tratamiento farmacológico , Animales , Plaquetas/metabolismo , Plaquetas/fisiología , Calcio/metabolismo , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Femenino , Fibrinolíticos/uso terapéutico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Adhesividad Plaquetaria , Inhibidores de Proteínas Quinasas/uso terapéutico , Purinas/uso terapéutico , Quinazolinonas/uso terapéutico
6.
Proteomics ; 19(1-2): e1800248, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30536591

RESUMEN

Plasma-derived extracellular vesicles (EVs) have been extensively described as putative biomarkers in different diseases. Interestingly, increased levels of EVs subpopulations are well known to associate with obesity. The goal of this study is to identify EVs-derived biomarkers in plasma from obese patients in order to predict the development of pathological events associated with obesity. Samples are obtained from 22 obese patients and their lean-matched controls are divided into two cohorts: one for a 2D fluorescence difference gel electrophoresis (2D-DIGE)-based study, and the other one for a label free LC-MS/MS-based approach. EVs are isolated following a serial ultracentrifugation protocol. Twenty-two and 23 differentially regulated features are detected from 2D-DIGE and label free LC-MS/MS, respectively; most of them involve in the coagulation and complement cascades. Remarkably, there is an upregulation of complement C4, complement C3, and fibrinogen in obese patients following both approaches, the latter two also validated by 2D-western-blotting in an independent cohort. These results correlate with a proinflammatory and prothrombotic state of those individuals. On the other hand, a downregulation of adiponectin leading to an increased risk of suffering cardiovascular diseases has been shown. The results suggest the relevance of plasma-derived-EVs proteins as a source of potential biomarkers for the development of atherothrombotic events in obesity.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Vesículas Extracelulares/metabolismo , Obesidad/metabolismo , Proteómica/métodos , Western Blotting , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Femenino , Humanos , Masculino , Espectrometría de Masas en Tándem
7.
Methods Mol Biol ; 2628: 207-219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781788

RESUMEN

In the last years, platelet concentrates such as leukocyte-platelet-rich fibrin (L-PRF) have been used in different clinical scenarios as a huge source of growth factors to enhance wound healing. However, platelet concentrates release many other proteins that also participate in tissue regeneration processes. In this context, the analysis of the L-PRF secretome would provide relevant information on the different proteins and growth factors released by these platelet concentrates, how such secretion varies with the time, and how relevant this could be for the regenerative properties of these products. In the present chapter, we will provide a protocol for isolation, culture, and secretome analysis of L-PRF membranes. Qualitative and quantitative proteomic approaches will be presented, including gel-based and quantitative Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)-based approaches. This protocol has been recently applied with success to define the L-PRF secretome composition, setting the stage for further research that can provide relevant information on the clinical properties of these platelet concentrates' subtype.


Asunto(s)
Fibrina Rica en Plaquetas , Plasma Rico en Plaquetas , Fibrina Rica en Plaquetas/metabolismo , Proteómica , Secretoma , Fibrina/metabolismo , Leucocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
8.
Thromb Res ; 228: 105-116, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37302266

RESUMEN

INTRODUCTION: The protein tyrosine phosphatase SHP2 (PTPN11) is a negative regulator of glycoprotein VI (GPVI)-induced platelet signal under certain conditions. Clinical trials with derivatives of the allosteric drug SHP099, inhibiting SHP2, are ongoing as potential therapy for solid cancers. Gain-of-function mutations of the PTPN11 gene are observed in part of the patients with the Noonan syndrome, associated with a mild bleeding disorder. Assessment of the effects of SHP2 inhibition in platelets from controls and Noonan syndrome patients. MATERIALS AND METHODS: Washed human platelets were incubated with SHP099 and stimulated with collagen-related peptide (CRP) for stirred aggregation and flow cytometric measurements. Whole-blood microfluidics assays using a dosed collagen and tissue factor coating were performed to assess shear-dependent thrombus and fibrin formation. Effects on clot formation were evaluated by thromboelastometry. RESULTS: Pharmacological inhibition of SHP2 did not alter GPVI-dependent platelet aggregation under stirring, but it enhanced integrin αIIbß3 activation in response to CRP. Using whole-blood microfluidics, SHP099 increased the thrombus buildup on collagen surfaces. In the presence of tissue factor and coagulation, SHP099 increased thrombus size and reduced time to fibrin formation. Blood from PTPN11-mutated Noonan syndrome patients, with low platelet responsiveness, after ex vivo treatment with SHP099 showed a normalized platelet function. In thromboelastometry, SHP2 inhibition tended to increase tissue factor-induced blood clotting profiles with tranexamic acid, preventing fibrinolysis. CONCLUSION: Pharmacological inhibition of SHP2 by the allosteric drug SHP099 enhances GPVI-induced platelet activation under shear conditions with a potential to improve platelet functions of Noonan syndrome patients.


Asunto(s)
Síndrome de Noonan , Trombosis , Humanos , Plaquetas/metabolismo , Síndrome de Noonan/tratamiento farmacológico , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Tromboplastina/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Colágeno/metabolismo , Fibrina/metabolismo , Glicoproteínas de Membrana Plaquetaria , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo
9.
Thromb Haemost ; 122(8): 1361-1368, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35170009

RESUMEN

BACKGROUND: CLEC-2 is a platelet receptor with an important role in thromboinflammation but a minor role in hemostasis. Two endogenous ligands of CLEC-2 have been identified, the transmembrane protein podoplanin and iron-containing porphyrin hemin, which is formed following hemolysis from red blood cells. Other exogenous ligands such as rhodocytin have contributed to our understanding of the role of CLEC-2. OBJECTIVES: To identify novel CLEC-2 small-molecule ligands to aid therapeutic targeting of CLEC-2. METHODS: ALPHA screen technology has been used for the development of a high-throughput screening (HTS) assay recapitulating the podoplanin-CLEC-2 interaction. Light transmission aggregometry was used to evaluate platelet aggregation. Immunoprecipitation and western blot were used to evaluate direct phosphorylation of CLEC-2 and downstream protein phosphorylation. Autodock vina software was used to predict the molecular binding site of katacine and mass spectrometry to determine the polymeric nature of the ligand. RESULTS AND CONCLUSION: We developed a CLEC-2-podoplanin interaction assay in a HTS format and screened 5,016 compounds from a European Union-open screen library. We identified katacine, a mixture of polymers of proanthocyanidins, as a novel ligand for CLEC-2 and showed that it induces platelet aggregation and CLEC-2 phosphorylation via Syk and Src kinases. Platelet aggregation induced by katacine is inhibited by the anti-CLEC-2 monoclonal antibody fragment AYP1 F(ab)'2. Katacine is a novel nonprotein ligand of CLEC-2 that could contribute to a better understanding of CLEC-2 activation in human platelets.


Asunto(s)
Inflamación , Trombosis , Plaquetas/metabolismo , Humanos , Inflamación/metabolismo , Lectinas Tipo C/metabolismo , Ligandos , Glicoproteínas de Membrana/metabolismo , Activación Plaquetaria , Trombosis/metabolismo
10.
Sci Rep ; 10(1): 14571, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32884030

RESUMEN

Leukocyte-platelet rich fibrin (L-PRF) is extensively used in the dentistry field and other clinical scenarios due to its regeneration properties. The goal of the present study was to depict the L-PRF secretome and how it changes over time. We obtained L-PRF membranes and cultured them in DMEM. The secretome was collected at days 3, 7 and 21. The secretome at day 3 was analysed by LC-MS/MS and differences over time were analysed by Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH). Overall, 705 proteins were identified in the secretome of L-PRF membranes after 3 days of culture, including growth factors (EGF, PDGFA) and proteins related to platelet and neutrophil degranulation. A total of 202 differentially secreted proteins were quantified by SWATH when comparing secretomes at days 3, 7 and 21. Most of them were enriched at day 3 such as MMP9, TSP1 and CO3. On the contrary, fibrinogen and CATS were found down-regulated at day 3. Growth factor and western blotting analysis corroborated the proteomic results. This is the most detailed proteome analysis of the L-PRF secretome to date. Proteins and growth factors identified, and their kinetics, provide novel information to further understand the wound healing properties of L-PRF.


Asunto(s)
Leucocitos/metabolismo , Fibrina Rica en Plaquetas/metabolismo , Proteoma/análisis , Cicatrización de Heridas , Femenino , Voluntarios Sanos , Humanos , Masculino
11.
J Proteomics ; 210: 103529, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31605789

RESUMEN

In blood banks, platelets are stored until 7 days after a pathogen reduction technology (PRT) treatment, Mirasol® (vitamin B2 plus UVB light) in the present case. The storage time under these conditions may have an impact on platelets and their releasate leading to potential adverse reactions following transfusion to patients. The aim of this study was to analyze the proteome of extracellular vesicles generated by platelets at different storage days (2 and 7) to gain deeper information on the platelet concentrates state at those moments. EVs were isolated by a centrifugation-based approach and characterized by dynamic light scattering and transmission electron microscopy. Proteomic analysis was by LC-MS/MS and quantification by SWATH. In this way, 151 proteins were found up-regulated at day 7 of storage. This group includes CCL5 and Platelet Factor 4, chemokines with power to attract neutrophils and monocytes, which could generate transfusion adverse reactions. In addition, other glycoproteins and platelet activation markers were also found elevated at day 7. Proteins related to glycolysis and lactate production were found altered with high fold changes, showing a deregulation of platelet metabolism at day 7. The obtained results provide novel information about possible effects of platelet-derived EVs on transfusion adverse reactions. SIGNIFICANCE: We performed the first proteomic analysis of extracellular vesicles derived from platelets upon storage at different time points on blood bank conditions after Mirasol® treatment. We identified a high number of proteins related to platelet activation and platelet storage lesion that could have a role in possible transfusion adverse reactions.


Asunto(s)
Biomarcadores/sangre , Plaquetas/metabolismo , Conservación de la Sangre/métodos , Vesículas Extracelulares/metabolismo , Proteómica/métodos , Riboflavina/farmacología , Rayos Ultravioleta , Plaquetas/efectos de los fármacos , Plaquetas/efectos de la radiación , Cromatografía Liquida/métodos , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/efectos de la radiación , Humanos , Fármacos Fotosensibilizantes/farmacología , Activación Plaquetaria , Espectrometría de Masas en Tándem/métodos
12.
Thromb Haemost ; 120(2): 262-276, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31901221

RESUMEN

C-type lectin-like receptor 2 (CLEC-2) plays a crucial role in different platelet-related physiological and pathological processes. It signals through a tyrosine kinase-mediated pathway that is highly dependent on the positive feedback exerted by the platelet-derived secondary mediators, adenosine diphosphate (ADP) and thromboxane A2 (TXA2). Here, we aimed to analyze the tyrosine phosphoproteome of platelets activated with the CLEC-2 agonist rhodocytin to identify relevant phosphorylated tyrosine residues (p-Tyr) and proteins involved in platelet activation downstream of this receptor. We identified 363 differentially p-Tyr residues, corresponding to the majority of proteins previously known to participate in CLEC-2 signaling and also novel ones, including adaptors (e.g., DAPP1, Dok1/3, CASS4, Nck1/2), kinases/phosphatases (e.g., FAK1, FES, FGR, JAK2, SHIP2), and membrane proteins (e.g., G6F, JAM-A, PECAM-1, TLT-1). To elucidate the contribution of ADP and TXA2 at different points of the CLEC-2 signaling cascade, we evaluated p-Tyr levels of residues identified in the analysis and known to be essential for the catalytic activity of kinases Syk(p-Tyr525+526) and Src(p-Tyr419), and for PLCγ2 activity (p-Tyr759). We demonstrated that Syk phosphorylation at Tyr525+526 also happens in the presence of ADP and TXA2 inhibitors, which is not the case for Src-pTyr419 and PLCγ2-pTyr759. Kinetics studies for the three phosphoproteins show some differences in the phosphorylation profile. Ca2+ mobilization assays confirmed the relevance of ADP and TXA2 for full CLEC-2-mediated platelet activation. The present study provides significant insights into the intracellular events that take place following CLEC-2 activation in platelets, contributing to elucidate in detail the CLEC-2 signalosome.


Asunto(s)
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Fosfoproteínas/química , Transducción de Señal , Tirosina/química , Adenosina Difosfato/química , Adulto , Calcio/química , Calcio/metabolismo , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Fosforilación , Fosfotirosina/química , Activación Plaquetaria , Agregación Plaquetaria , Proteoma , Tromboxano A2/química , Adulto Joven
13.
J Proteomics ; 195: 88-97, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30677554

RESUMEN

Lipid rafts are membrane microdomains that have been proposed to play an important role in several platelet-signalling cascades, including those mediated by the receptors Glycoprotein VI (GPVI), and C-type lectin domain family 1 member B (CLEC-2), both involved in thrombus formation. We have performed a LC-MS/MS proteomic analysis of lipid rafts isolated from platelets activated through GPVI and CLEC-2 as well as from resting platelets. Our aim was to determine the magnitude of changes in lipid rafts protein composition and to elucidate the relevance of these alterations in platelet function. A number of relevant signalling proteins were found enriched in lipid rafts following platelet activation (such as the tyrosine protein kinases Fyn, Lyn and Yes; the G proteins G(i) and G(z); and cAMP protein kinase). Interestingly, our results indicate that the relative enrichment of lipid rafts in these signalling proteins may not be a consequence of protein translocation to these domains upon platelet stimulation, but the result of a massive loss in cytoskeletal proteins after platelet activation. Thus, this study may help to better understand the effects of platelet activation in the reorganization of lipid rafts and set the basis for further proteomic studies of these membrane microdomains in platelets. SIGNIFICANCE: We performed the first proteomic comparative analysis of lipid rafts- protein composition in platelets activated through GPVI and CLEC-2 receptors and in resting state. We identified a number of signalling proteins essential for platelet activation relatively enriched in platelets activated through both receptors, and we show that lipid rafts reorganization upon platelet activation leads to a loss in cytoskeletal proteins, highly associated to these domains in resting platelets.


Asunto(s)
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Microdominios de Membrana/metabolismo , Activación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Transducción de Señal , Plaquetas/citología , Humanos
14.
Atherosclerosis ; 281: 62-70, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30658193

RESUMEN

BACKGROUND AND AIMS: Platelets play a fundamental role in the increased atherothrombotic risk related to central obesity since they show hyperactivation and lower sensitivity to antiplatelet therapy in obese patients. The main goal of this study was to identify platelet biomarkers related to the risk of atherothrombosis in obese patients, confirm platelet activation levels in these patients, and identify altered activation pathways. METHODS: Platelets were obtained from cohorts of obese patients and age- and sex-matched lean controls. Biochemical and proteome analyses were done by two-dimensional differential in-gel electrophoresis (2D-DIGE), mass spectrometry, and immunoblotting. Functional and mechanistic studies were conducted with aggregation assays and flow cytometry. RESULTS: We confirmed an up-regulation of αIIb and fibrinogen isoforms in platelets from obese patients. A complementary platelet aggregation approach showed platelets from obese patients are hyper-reactive in response to collagen and collagen-related peptide (CRP), revealing the collagen receptor Glycoprotein VI (GPVI) signalling as one of the altered pathways. We also found the active form of Src (pTyr418) is up-regulated in platelets from obese individuals, which links proteomics to aggregation data. Moreover, we showed that CRP-activated platelets present higher levels of tyrosine phosphorylated PLCγ2 in obese patients, confirming alterations in GPVI signalling. In line with the above, flow cytometry studies show higher surface expression levels of total GPVI and GPVI-dimer in obese platelets, both correlating with BMI. CONCLUSIONS: Our results suggest a higher activation state of SFKs-mediated signalling pathways in platelets from obese patients, with a primary involvement of GPVI signalling.


Asunto(s)
Plaquetas/metabolismo , Obesidad/sangre , Activación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Adolescente , Adulto , Índice de Masa Corporal , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Obesidad/diagnóstico , Fosfolipasa C gamma/sangre , Fosforilación , Agregación Plaquetaria , Transducción de Señal , Regulación hacia Arriba , Adulto Joven
15.
Data Brief ; 23: 103784, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31372431

RESUMEN

This data article is associated with the manuscript "GPVI surface expression and signalling pathway activation are increased in platelets from obese patients: elucidating potential anti-atherothrombotic targets in obesity" [1]. The study refers to a combination of different approaches in order to identify platelet-derived biomarkers in obesity. A total of 34 obese patients and their lean-matched controls were included in the study. We carried out a proteomic and functional (aggregation assays) analysis to find alterations in platelet-derived signalling pathways. After that, biochemical and mechanistic (flow cytometry assays) approaches were done in order to confirm a hyperactivation of the GPVI-related signalling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA