Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; : e202400640, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383297

RESUMEN

Multidrug Resistance (MDR) can be considered one of the most frightening adaptation types in bacteria, fungi, protozoa, and eukaryotic cells. It allows the organisms to survive the attack of many drugs used in the daily basis. This force the development of new and more complex, highly specific drugs to fight diseases. Given the high usage of medicaments, poor variation in active chemical cores, and self-medication, the appearance of MDR is more frequent each time, and has been established as a serious medical and social problem. Over the years it has been possible the identification of several genes and proteins responsible for MDR and with that the development of blockers of them to reach MDR reversion and try to avoid a global problem. These mechanisms also have been observed in cancer cells, and several calcium channel blockers have been successful in MDR reversion, and the maleimide can be found included in them. In this review we explore the history, mechanisms, reversion efforts, and we specifically focused on the maleimide synthesis as MDR-reversers in co-administration, as well as their biological applications in a urge to expand the available information and explore a very plausible MDR reversion source.

2.
Chem Biodivers ; 21(1): e202300883, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010267

RESUMEN

Multi-Drug Resistance (MDR) is one of the most frequent problems observed in the course of cancer chemotherapy. Cells under treatment, tend to develop survival mechanisms to drug-action thus generating drug-resistance. One of the most important mechanism to get it is the over expression of P-gp glycoprotein, which acts as an efflux-pump releasing the drug outside of the cancer cell. A strategy for a succesfull treatment consists in the co-administration of one compound that acts against P-gp and another which acts against the cell during chemotherapy. Ningalins are pyrrole-containing naturally occurring compounds isolated mainly from the marine tunicate Didemnum spp and also they are some of the top reversing agents in MDR treatment acting on P-gp. Considering the relevance displayed for some of these isolated alkaloids or their core as a drug for co-administration in cancer therapy, all the total synthesis described to date for the members of ningalins family are reviewed herein.


Asunto(s)
Neoplasias , Urocordados , Animales , Resistencia a Antineoplásicos , Resistencia a Múltiples Medicamentos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Subfamilia B de Transportador de Casetes de Unión a ATP , Urocordados/metabolismo , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico
3.
Bioorg Med Chem Lett ; 86: 129241, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36933671

RESUMEN

Metformin is the most widely known anti-hyperglycemic, officially acquired by the USA government in 1995 and in 2001 it became the most prescribed treatment for type II diabetes. But how did it become the must-use drug for this disease in such a short period of time? it all started with traditional medicine, by using a plant known as "goat's rue" for the reduction of blood glucose levels. Its use arose in 1918 and evolved to the metformin synthesis in laboratories a couple of years later, using very rudimentary methods which involved melting and strong heating. Thus, a first synthetic route that allowed the preparation of the initial metformin derivates was established. Some of these resulted toxics, and others outperformed the metformin, reducing the blood glucose levels in such efficient way. Nevertheless, the risk and documented cases of lactic acidosis increased with metformin derivatives like buformin and phenformin. Recently, metformin has been widely studied, and it has been associated and tested in the treatment of type II diabetes, cancer, polycystic ovarian syndrome, cell differentiation to oligodendrocytes, reduction of oxidative stress in cells, weight reduction, as anti-inflammatory and even in the recent COVID-19 disease. Herein we briefly review and analyze the history, synthesis, and biological applications of metformin and its derivates.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Glucemia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA