Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Hum Genet ; 139(12): 1541-1554, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32594240

RESUMEN

The homeodomain transcription factors (TFs) Pax6 (OMIM: 607108) and Prox1 (OMIM: 601546) critically regulate gene expression in lens development. While PAX6 mutations in humans can cause cataract, aniridia, microphthalmia, and anophthalmia, among other defects, Prox1 deletion in mice causes severe lens abnormalities, in addition to other organ defects. Furthermore, the optimal dosage/spatiotemporal expression of these key TFs is essential for development. In lens development, Pax6 expression is elevated in cells of the anterior epithelium compared to fiber cells, while Prox1 exhibits the opposite pattern. Whether post-transcriptional regulatory mechanisms control these precise TF expression patterns is unknown. Here, we report the unprecedented finding that the cataract-linked RNA-binding protein (RBP), Celf1 (OMIM: 601074), post-transcriptionally regulates Pax6 and Prox1 protein expression in lens development. Immunostaining shows that Celf1 lens-specific conditional knockout (Celf1cKO) mice exhibit abnormal elevation of Pax6 protein in fiber cells and abnormal Prox1 protein levels in epithelial cells-directly opposite to their normal expression patterns in development. Furthermore, RT-qPCR shows no change in Pax6 and Prox1 transcript levels in Celf1cKO lenses, suggesting that Celf1 regulates these TFs on the translational level. Indeed, RNA-immunoprecipitation assays using Celf1 antibody indicate that Celf1 protein binds to Pax6 and Prox1 transcripts. Furthermore, reporter assays in Celf1 knockdown and Celf1-overexpression cells demonstrate that Celf1 negatively controls Pax6 and Prox1 translation via their 3' UTRs. These data define a new mechanism of RBP-based post-transcriptional regulation that enables precise control over spatiotemporal expression of Pax6 and Prox1 in lens development, thereby uncovering a new etiological mechanism for Celf1 deficiency-based cataract.


Asunto(s)
Proteínas CELF1/genética , Catarata/genética , Proteínas de Homeodominio/genética , Cristalino/metabolismo , Factor de Transcripción PAX6/genética , Proteínas Supresoras de Tumor/genética , Animales , Proteínas CELF1/antagonistas & inhibidores , Proteínas CELF1/deficiencia , Catarata/patología , Diferenciación Celular/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas del Ojo/antagonistas & inhibidores , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Cristalino/crecimiento & desarrollo , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/genética
2.
Hum Genet ; 139(2): 151-184, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31797049

RESUMEN

While the bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery) effectively identifies human cataract-associated genes, it is currently based on just transcriptome data, and thus, it is necessary to include protein-level information to gain greater confidence in gene prioritization. Here, we expand iSyTE through development of a novel proteome-based resource on the lens and demonstrate its utility in cataract gene discovery. We applied high-throughput tandem mass spectrometry (MS/MS) to generate a global protein expression profile of mouse lens at embryonic day (E)14.5, which identified 2371 lens-expressed proteins. A major challenge of high-throughput expression profiling is identification of high-priority candidates among the thousands of expressed proteins. To address this problem, we generated new MS/MS proteome data on mouse whole embryonic body (WB). WB proteome was then used as a reference dataset for performing "in silico WB-subtraction" comparative analysis with the lens proteome, which effectively identified 422 proteins with lens-enriched expression at ≥ 2.5 average spectral counts, ≥ 2.0 fold enrichment (FDR < 0.01) cut-off. These top 20% candidates represent a rich pool of high-priority proteins in the lens including known human cataract-linked genes and many new potential regulators of lens development and homeostasis. This rich information is made publicly accessible through iSyTE (https://research.bioinformatics.udel.edu/iSyTE/), which enables user-friendly visualization of promising candidates, thus making iSyTE a comprehensive tool for cataract gene discovery.


Asunto(s)
Biomarcadores/metabolismo , Catarata/metabolismo , Simulación por Computador , Proteínas del Ojo/metabolismo , Cristalino/metabolismo , Proteoma/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Catarata/genética , Catarata/patología , Biología Computacional , Proteínas del Ojo/genética , Perfilación de la Expresión Génica , Humanos , Cristalino/embriología , Ratones , Ratones Endogámicos C57BL , Proteoma/análisis , Transcriptoma
3.
ACS Infect Dis ; 8(3): 584-595, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35179882

RESUMEN

Candida auris is an emerging multidrug-resistant fungal pathogen. With high mortality rates, there is an urgent need for new antifungals to combat C. auris. Possible antifungal targets include Cu-only superoxide dismutases (SODs), extracellular SODs that are unique to fungi and effectively combat the superoxide burst of host immunity. Cu-only SODs are essential for the virulence of diverse fungal pathogens; however, little is understood about these enzymes in C. auris. We show here that C. auris secretes an enzymatically active Cu-only SOD (CaurSOD4) when cells are starved for Fe, a condition mimicking host environments. Although predicted to attach to cell walls, CaurSOD4 is detected as a soluble extracellular enzyme and can act at a distance to remove superoxide. CaurSOD4 selectively binds Cu and not Zn, and Cu binding is labile compared to bimetallic Cu/Zn SODs. Moreover, CaurSOD4 is susceptible to inhibition by various metal-binding drugs that are without effect on mammalian Cu/Zn SODs. Our studies highlight CaurSOD4 as a potential antifungal target worthy of consideration.


Asunto(s)
Antifúngicos , Candida auris , Farmacorresistencia Fúngica Múltiple , Superóxido Dismutasa , Animales , Antifúngicos/farmacología , Candida auris/efectos de los fármacos , Candida auris/enzimología , Candida auris/metabolismo , Candida auris/patogenicidad , Cobre/metabolismo , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Farmacorresistencia Fúngica Múltiple/fisiología , Mamíferos/metabolismo , Superóxido Dismutasa/metabolismo , Virulencia/fisiología , Zinc/metabolismo
4.
Nat Commun ; 13(1): 6254, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271075

RESUMEN

Crop wild relatives (CWR) intra- and interspecific diversity is essential for crop breeding and food security. However, intraspecific genetic diversity, which is central given the idiosyncratic threats to species in landscapes, is usually not considered in planning frameworks. Here, we introduce an approach to develop proxies of genetic differentiation to identify conservation areas, applying systematic conservation planning tools that produce hierarchical prioritizations of the landscape. It accounts for: (i) evolutionary processes, including historical and environmental drivers of genetic diversity, and (ii) threat processes, considering taxa-specific tolerance to human-modified habitats, and their extinction risk status. Our analyses can be used as inputs for developing national action plans for the conservation and use of CWR. Our results also inform public policy to mitigate threat processes to CWR (like crops living modified organisms or agriculture subsidies), and could advise future research (e.g. for potential germplasm collecting). Although we focus on Mesoamerican CWR within Mexico, our methodology offers opportunities to effectively guide conservation and monitoring strategies to safeguard the evolutionary resilience of any taxa, including in regions of complex evolutionary histories and mosaic landscapes.


Asunto(s)
Conservación de los Recursos Naturales , Fitomejoramiento , Humanos , Productos Agrícolas/genética , Agricultura/métodos , Evolución Biológica
5.
PhytoKeys ; 156: 1-25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32943975

RESUMEN

Ceratozamia is a genus of cycads occurring in eastern Mexico and Central America. In this study, we describe a new species from the Pacific region of Mexico in Guerrero state. This locality represents the most northwestern Mexico distribution for the genus. We focus the comparison of this species with the most geographically proximate and phenotypically relevant lineages for this taxon. We followed an integrative taxonomy approach to evaluate the classification of these species, including geographic location, morphology, DNA barcoding and phenology as primary sources of systematic data. Within the morphological dataset, reproductive structures are described in detail and new characters are proposed for microsporophylls. The comparative morphology of these structures facilitated the elucidation of differences in forms and species for identification. The two chosen DNA barcoding markers - namely, the chloroplast genome coding region matK and the nuclear ribosomal internal transcribed spacer (ITS) region - had low divergence, allowing only 61% of species identification, suggesting slow molecular evolutionary rates. Besides employing these three basic sources of evidence, we introduced phenology as additional information for species circumscription. In addition, this work includes a brief review of the genus at the species-level. This is therefore the most recent review for Ceratozamia across its full geographic range (latitudinal and elevational). Overall, this work further contributes to a comprehensive framework for systematic studies in Mexican cycads.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA