Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Immunol ; 204(7): 1798-1809, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32066596

RESUMEN

Plasmodium spp., the causative agent of malaria, have a complex life cycle. The exponential growth of the parasites during the blood stage is responsible for almost all malaria-associated morbidity and mortality. Therefore, tight immune control of the intraerythrocytic replication of the parasite is essential to prevent clinical malaria. Despite evidence that the particular lymphocyte subset of γδ T cells contributes to protective immunity during the blood stage in naive hosts, their precise inhibitory mechanisms remain unclear. Using human PBMCs, we confirmed in this study that γδ T cells specifically and massively expanded upon activation with Plasmodium falciparum culture supernatant. We also demonstrate that these activated cells gain cytolytic potential by upregulating cytotoxic effector proteins and IFN-γ. The killer cells bound to infected RBCs and killed intracellular P. falciparum via the transfer of the granzymes, which was mediated by granulysin in a stage-specific manner. Several vital plasmodial proteins were efficiently destroyed by granzyme B, suggesting proteolytic degradation of these proteins as essential in the lymphocyte-mediated death pathway. Overall, these data establish a granzyme- and granulysin-mediated innate immune mechanism exerted by γδ T cells to kill late-stage blood-residing P. falciparum.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/inmunología , Granzimas/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Antígenos de Protozoos/inmunología , Células Cultivadas , Eritrocitos/inmunología , Humanos , Inmunidad Innata/inmunología , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/inmunología , Estadios del Ciclo de Vida/inmunología , Activación de Linfocitos/inmunología , Subgrupos de Linfocitos T/inmunología , Regulación hacia Arriba/inmunología
2.
Cell Microbiol ; 15(10): 1735-52, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23534541

RESUMEN

Host cell manipulation is an important feature of the obligate intracellular parasite Toxoplasma gondii. Recent reports have shown that the tachyzoite stages subvert dendritic cells (DC) as a conduit for dissemination (Trojan horse) during acute infection. To examine the cellular basis of these processes, we performed a detailed analysis of the early events following tachyzoite invasion of human monocyte-derived DC. We demonstrate that within minutes after tachyzoite penetration, profound morphological changes take place in DC that coincide with a migratory activation. Active parasite invasion of DC led to cytoskeletal actin redistribution with loss of adhesive podosome structures and redistribution of integrins (CD18 and CD11c), that concurred with the onset of DC hypermotility in vitro. Inhibition of parasite rhoptry secretion and invasion, but not inhibition of parasite or host cell protein synthesis, abrogated the onset of morphological changes and hypermotility in DC dose-dependently. Also, infected DC, but not by-stander DC, exhibited upregulation of C-C chemokine receptor 7 (CCR7). Yet, the onset of parasite-induced DC hypermotility preceded chemotactic migratory responsesin vitro. Collectively, present data reveal that invasion of DC by T. gondii initiates a series of regulated events, including rapid cytoskeleton rearrangements, hypermotility and chemotaxis, that promote the migratory activation of DC.


Asunto(s)
Movimiento Celular , Citoesqueleto/metabolismo , Células Dendríticas/fisiología , Células Dendríticas/parasitología , Endocitosis , Interacciones Huésped-Patógeno , Toxoplasma/fisiología , Células Cultivadas , Quimiotaxis , Humanos
3.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798324

RESUMEN

Plasmodium falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive natural killer (NK) cells correlate with reduced parasite load and protection from symptoms. We also previously found that murine NK cell production of IL-10 can protect mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it was unknown what NK cell subsets produce IL-10 and if this is affected by malaria experience. We hypothesize that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we show that NK cells from subjects with malaria experience make significantly more IL-10 than subjects with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce interferon gamma and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we find that co-culture with primary monocytes, Plasmodium -infected RBCs, and antibody induces IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.

4.
Front Immunol ; 12: 750512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707614

RESUMEN

Cell-mediated cytotoxicity is an essential immune defense mechanism to fight against viral, bacterial or parasitic infections. Upon recognition of an infected target cell, killer lymphocytes form an immunological synapse to release the content of their cytotoxic granules. Cytotoxic granules of humans contain two membrane-disrupting proteins, perforin and granulysin, as well as a homologous family of five death-inducing serine proteases, the granzymes. The granzymes, after delivery into infected host cells by the membrane disrupting proteins, may contribute to the clearance of microbial pathogens through different mechanisms. The granzymes can induce host cell apoptosis, which deprives intracellular pathogens of their protective niche, therefore limiting their replication. However, many obligate intracellular pathogens have evolved mechanisms to inhibit programed cells death. To overcome these limitations, the granzymes can exert non-cytolytic antimicrobial activities by directly degrading microbial substrates or hijacked host proteins crucial for the replication or survival of the pathogens. The granzymes may also attack factors that mediate microbial virulence, therefore directly affecting their pathogenicity. Many mechanisms applied by the granzymes to eliminate infected cells and microbial pathogens rely on the induction of reactive oxygen species. These reactive oxygen species may be directly cytotoxic or enhance death programs triggered by the granzymes. Here, in the light of the latest advances, we review the antimicrobial activities of the granzymes in regards to their cytolytic and non-cytolytic activities to inhibit pathogen replication and invasion. We also discuss how reactive oxygen species contribute to the various antimicrobial mechanisms exerted by the granzymes.


Asunto(s)
Granzimas/inmunología , Animales , Muerte Celular , Humanos , Infecciones/inmunología , Especies Reactivas de Oxígeno/inmunología
5.
Front Immunol ; 12: 643746, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093532

RESUMEN

Malaria remains one of the most serious health problems in developing countries. The causative agent of malaria, Plasmodium spp., have a complex life cycle involving multiple developmental stages as well as different morphological, biochemical and metabolic requirements. We recently found that γδ T cells control parasite growth using pore-forming proteins to deliver their cytotoxic proteases, the granzymes, into blood residing parasites. Here, we follow up on the molecular mechanisms of parasite growth inhibition by human pore-forming proteins. We confirm that Plasmodium falciparum infection efficiently depletes the red blood cells of cholesterol, which renders the parasite surrounding membranes susceptible to lysis by prokaryotic membrane disrupting proteins, such as lymphocytic granulysin or the human cathelicidin LL-37. Interestingly, not the cholesterol depletion but rather the simultaneous exposure of phosphatidylserine, a negatively charged phospholipid, triggers resistance of late stage parasitized red blood cells towards the eukaryotic pore forming protein perforin. Overall, by revealing the molecular events we establish here a pathogen-host interaction that involves host cell membrane remodeling that defines the susceptibility towards cytolytic molecules.


Asunto(s)
Membrana Eritrocítica/inmunología , Hemólisis/inmunología , Malaria Falciparum/inmunología , Perforina/inmunología , Plasmodium falciparum/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T , Péptidos Catiónicos Antimicrobianos/inmunología , Susceptibilidad a Enfermedades , Membrana Eritrocítica/parasitología , Humanos , Catelicidinas
6.
Nat Commun ; 10(1): 1369, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30911004

RESUMEN

Methods to diagnose malaria are of paramount interest to eradicate the disease. Current methods have severe limitations, as they are either costly or not sensitive enough to detect low levels of parasitemia. Here we report an ultrasensitive, yet low-resource chemical assay for the detection and quantification of hemozoin, a biomarker of all Plasmodium species. Solubilized hemozoin catalyzes the atom transfer radical polymerization of N-isopropylacrylamide above the lower critical solution temperature of poly(N-isopropylacrylamide). The solution becomes turbid, which can be observed by naked eye and quantified by UV-visible spectroscopy. The rate of turbidity increase is proportional to the concentration of hemozoin, with a detection limit of 0.85 ng mL-1. Malaria parasites in human blood can be detected down to 10 infected red blood cells µL-1. The assay could potentially be applied as a point-of-care test. The signal-amplification of an analyte by biocatalytic precipitation polymerization represents a powerful approach in biosensing.


Asunto(s)
Acrilamidas/química , Resinas Acrílicas/química , Bioensayo , Técnicas Biosensibles , Hemoproteínas/química , Malaria Falciparum/diagnóstico , Plasmodium falciparum/química , Biocatálisis , Eritrocitos/parasitología , Hemoproteínas/aislamiento & purificación , Humanos , Límite de Detección , Malaria Falciparum/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Polimerizacion , Espectrofotometría/métodos
7.
J Vis Exp ; (132)2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29553510

RESUMEN

Malaria is a life-threatening disease caused by Plasmodium parasites, with P. falciparum being the most prevalent on the African continent and responsible for most malaria-related deaths globally. Several factors including parasite sequestration in tissues, vascular dysfunction, and inflammatory responses influence the evolution of the disease in malaria-infected people. P. falciparum-infected red blood cells (iRBCs) release small extracellular vesicles (EVs) containing different kinds of cargo molecules that mediate pathogenesis and cellular communication between parasites and host. EVs are efficiently taken up by cells in which they modulate their function. Here we discuss strategies to address the role of EVs in parasite-host interactions. First, we describe a straightforward method for labeling and tracking EV internalization by endothelial cells, using a green cell linker dye. Second, we report a simple way to measure permeability across an endothelial cell monolayer by using a fluorescently labeled dextran. Finally, we show how to investigate the role of small non-coding RNA molecules in endothelial cell function.


Asunto(s)
Células Endoteliales/patología , Eritrocitos/patología , Eritrocitos/parasitología , Vesículas Extracelulares/patología , Malaria Falciparum/sangre , Animales , Células Endoteliales/metabolismo , Eritrocitos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Microscopía Confocal
8.
Front Immunol ; 9: 1875, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154793

RESUMEN

Cerebral malaria is a complex neurological syndrome caused by an infection with Plasmodium falciparum parasites and is exclusively attributed to a series of host-parasite interactions at the pathological blood-stage of infection. In contrast, the preceding intra-hepatic phase of replication is generally considered clinically silent and thereby excluded from playing any role in the development of neurological symptoms. In this study, however, we present an antigen PbmaLS_05 that is presented to the host immune system by both pre-erythrocytic and intra-erythrocytic stages and contributes to the development of cerebral malaria in mice. Although deletion of the endogenous PbmaLS_05 prevented the development of experimental cerebral malaria (ECM) in susceptible mice after both sporozoite and infected red blood cell (iRBC) infections, we observed significant differences in contribution of the host immune response between both modes of inoculation. Moreover, PbmaLS_05-specific CD8+ T cells contributed to the development of ECM after sporozoite but not iRBC-infection, suggesting that pre-erythrocytic antigens like PbmaLS_05 can also contribute to the development of cerebral symptoms. Our data thus highlight the importance of the natural route of infection in the study of ECM, with potential implications for vaccine and therapeutic strategies against malaria.


Asunto(s)
Antígenos de Protozoos/inmunología , Susceptibilidad a Enfermedades , Malaria Cerebral/inmunología , Malaria Cerebral/parasitología , Plasmodium berghei/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Reactividad Cruzada/inmunología , Modelos Animales de Enfermedad , Expresión Génica , Genes Protozoarios , Genes Reporteros , Estadios del Ciclo de Vida , Imagen por Resonancia Magnética , Malaria Cerebral/diagnóstico , Malaria Cerebral/patología , Ratones , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo
9.
Sci Rep ; 8(1): 884, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343745

RESUMEN

The parasite Plasmodium falciparum causes the most severe form of malaria. Cell communication between parasites is an important mechanism to control population density and differentiation. The infected red blood cells (iRBCs) release small extracellular vesicles (EVs) that transfer cargoes between cells. The EVs synchronize the differentiation of the asexual parasites into gametocytes to initiate the transmission to the mosquito. Beside their role in parasite communication, EVs regulate vascular function. So far, the exact cargoes responsible for cellular communication remain unknown. We isolated EVs from cultured iRBCs to determine their small RNA content. We identified several types of human and plasmodial regulatory RNAs. While the miRNAs and tRNA-derived fragments were the most abundant human RNAs, we also found Y-RNAs, vault RNAs, snoRNAs and piRNAs. Interestingly, we found about 120 plasmodial RNAs, including mRNAs coding for exported proteins and proteins involved in drug resistance, as well as non-coding RNAs, such as rRNAs, small nuclear (snRNAs) and tRNAs. These data show, that iRBC-EVs carry small regulatory RNAs. A role in cellular communication is possible since the RNAs were transferred to endothelial cells. Furthermore, the presence of Plasmodium RNAs, in EVs suggests that they may be used as biomarker to track and detect disease.


Asunto(s)
Eritrocitos/parasitología , Vesículas Extracelulares/genética , Malaria/genética , ARN/genética , Comunicación Celular/genética , Diferenciación Celular/genética , Células Cultivadas , Células Endoteliales/parasitología , Recuento de Eritrocitos/métodos , Vesículas Extracelulares/parasitología , Humanos , Malaria/parasitología , Plasmodium falciparum/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA