Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Am J Pathol ; 194(2): 195-208, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37981221

RESUMEN

miRNAs are small noncoding RNAs that regulate mRNA targets in a cell-specific manner. miR-29 is expressed in murine and human skin, where it may regulate functions in skin repair. Cutaneous wound healing model in miR-29a/b1 gene knockout mice was used to identify miR-29 targets in the wound matrix, where angiogenesis and maturation of provisional granulation tissue was enhanced in response to genetic deletion of miR-29. Consistently, antisense-mediated inhibition of miR-29 promoted angiogenesis in vitro by autocrine and paracrine mechanisms. These processes are likely mediated by miR-29 target mRNAs released upon removal of miR-29 to improve cell-matrix adhesion. One of these, laminin (Lam)-c2 (also known as laminin γ2), was strongly up-regulated during skin repair in the wound matrix of knockout mice. Unexpectedly, Lamc2 was deposited in the basal membrane of endothelial cells in blood vessels forming in the granulation tissue of knockout mice. New blood vessels showed punctate interactions between Lamc2 and integrin α6 (Itga6) along the length of the proto-vessels, suggesting that greater levels of Lamc2 may contribute to the adhesion of endothelial cells, thus assisting angiogenesis within the wound. These findings may be of translational relevance, as LAMC2 was deposited at the leading edge in human wounds, where it formed a basal membrane for endothelial cells and assisted neovascularization. These results suggest a link between LAMC2, improved angiogenesis, and re-epithelialization.


Asunto(s)
Laminina , MicroARNs , Humanos , Animales , Ratones , Laminina/genética , Células Endoteliales , Transducción de Señal/fisiología , MicroARNs/genética , Piel , Ratones Noqueados
2.
Biophys J ; 122(16): 3219-3237, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37415335

RESUMEN

Collagen is a key structural component of multicellular organisms and is arranged in a highly organized manner. In structural tissues such as tendons, collagen forms bundles of parallel fibers between cells, which appear within a 24-h window between embryonic day 13.5 (E13.5) and E14.5 during mouse embryonic development. Current models assume that the organized structure of collagen requires direct cellular control, whereby cells actively lay down collagen fibrils from cell surfaces. However, such models appear incompatible with the time and length scales of fibril formation. We propose a phase-transition model to account for the rapid development of ordered fibrils in embryonic tendon, reducing reliance on active cellular processes. We develop phase-field crystal simulations of collagen fibrillogenesis in domains derived from electron micrographs of inter-cellular spaces in embryonic tendon and compare results qualitatively and quantitatively to observed patterns of fibril formation. To test the prediction of this phase-transition model that free protomeric collagen should exist in the inter-cellular spaces before the formation of observable fibrils, we use laser-capture microdissection, coupled with mass spectrometry, which demonstrates steadily increasing free collagen in inter-cellular spaces up to E13.5, followed by a rapid reduction of free collagen that coincides with the appearance of less-soluble collagen fibrils. The model and measurements together provide evidence for extracellular self-assembly of collagen fibrils in embryonic mouse tendon, supporting an additional mechanism for rapid collagen fibril formation during embryonic development.


Asunto(s)
Desarrollo Embrionario , Matriz Extracelular , Animales , Ratones , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Membrana Celular , Tendones/química , Tendones/metabolismo
3.
Respir Res ; 24(1): 99, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005656

RESUMEN

Honeycombing is a histological pattern consistent with Usual Interstitial Pneumonia (UIP). Honeycombing refers to cystic airways located at sites of dense fibrosis with marked mucus accumulation. Utilizing laser capture microdissection coupled mass spectrometry (LCM-MS), we interrogated the fibrotic honeycomb airway cells and fibrotic uninvolved airway cells (distant from honeycomb airways and morphologically intact) in specimens from 10 patients with UIP. Non-fibrotic airway cell specimens from 6 patients served as controls. Furthermore, we performed LCM-MS on the mucus plugs found in 6 patients with UIP and 6 patients with mucinous adenocarcinoma. The mass spectrometry data were subject to both qualitative and quantitative analysis and validated by immunohistochemistry. Surprisingly, fibrotic uninvolved airway cells share a similar protein profile to honeycomb airway cells, showing deregulation of the slit and roundabout receptor (Slit and Robo) pathway as the strongest category. We find that (BPI) fold-containing family B member 1 (BPIFB1) is the most significantly increased secretome-associated protein in UIP, whereas Mucin-5AC (MUC5AC) is the most significantly increased in mucinous adenocarcinoma. We conclude that fibrotic uninvolved airway cells share pathological features with fibrotic honeycomb airway cells. In addition, fibrotic honeycomb airway cells are enriched in mucin biogenesis proteins with a marked derangement in proteins essential for ciliogenesis. This unbiased spatial proteomic approach generates novel and testable hypotheses to decipher fibrosis progression.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteoma , Humanos , Proteómica , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología
4.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L926-L941, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33719561

RESUMEN

Despite modest improvement in patient outcomes from recent advances in pharmacotherapy targeting fibrogenic signaling pathways, idiopathic pulmonary fibrosis (IPF) remains a major unsolved clinical problem. One reason for this is that available antifibrotic agents slow down but do not arrest fibrotic progression. To arrest fibrotic progression, its obligatory drivers need to be identified. We previously discovered that fibrogenic mesenchymal progenitor cells (MPCs) are key drivers of fibrotic progression in IPF, serving as cells of origin for disease-mediating myofibroblasts. IPF MPCs have high levels of nuclear S100A4, which interacts with the proteasome to promote p53 degradation and self-renewal. However, the mechanism underlying S100A4 accumulation in the nucleus of IPF MPCs remains unknown. Here we show that hyaluronan (HA) is present in the fibroblastic focus together with CD44-expressing MPCs and that ligation of CD44 by HA triggers S100A4 nuclear translocation to support IPF MPC self-renewal. The mechanism involves HA-mediated formation of a CD44/S100A4/transportin 1 complex, which promotes S100A4 nuclear import. In a humanized mouse model of pulmonary fibrosis, IPF MPC fibrogenicity was significantly attenuated by 1) knockdown of CD44 or 2) introduction of an S100A4 mutant construct that prevents S100A4 nuclear import. These data indicate that signaling through the HA/CD44/S100A4 axis is an integral component of IPF MPC fibrogenicity.


Asunto(s)
Núcleo Celular/metabolismo , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteína de Unión al Calcio S100A4/metabolismo , Transducción de Señal , Animales , Núcleo Celular/genética , Núcleo Celular/patología , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Receptores de Hialuranos/genética , Ácido Hialurónico/genética , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Células Madre Mesenquimatosas/patología , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteína de Unión al Calcio S100A4/genética , beta Carioferinas/genética , beta Carioferinas/metabolismo
5.
Clin Proteomics ; 17: 24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32565759

RESUMEN

BACKGROUND: Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. METHODS: Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. RESULTS: This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3. CONCLUSION: Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.

6.
Respir Res ; 21(1): 132, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471489

RESUMEN

BACKGROUND: Chronic tissue injury was shown to induce progressive scarring in fibrotic diseases such as idiopathic pulmonary fibrosis (IPF), while an array of repair/regeneration and stress responses come to equilibrium to determine the outcome of injury at the organ level. In the lung, type I alveolar epithelial (ATI) cells constitute the epithelial barrier, while type II alveolar epithelial (ATII) cells play a pivotal role in regenerating the injured distal lungs. It had been demonstrated that eukaryotic cells possess repair machinery that can quickly patch the damaged plasma membrane after injury, and our previous studies discovered the membrane-mending role of Tripartite motif containing 72 (TRIM72) that expresses in a limited number of tissues including the lung. Nevertheless, the role of alveolar epithelial cell (AEC) repair in the pathogenesis of IPF has not been examined yet. METHOD: In this study, we tested the specific roles of TRIM72 in the repair of ATII cells and the development of lung fibrosis. The role of membrane repair was accessed by saponin assay on isolated primary ATII cells and rat ATII cell line. The anti-fibrotic potential of TRIM72 was tested with bleomycin-treated transgenic mice. RESULTS: We showed that TRIM72 was upregulated following various injuries and in human IPF lungs. However, TRIM72 expression in ATII cells of the IPF lungs had aberrant subcellular localization. In vitro studies showed that TRIM72 repairs membrane injury of immortalized and primary ATIIs, leading to inhibition of stress-induced p53 activation and reduction in cell apoptosis. In vivo studies demonstrated that TRIM72 protects the integrity of the alveolar epithelial layer and reduces lung fibrosis. CONCLUSION: Our results suggest that TRIM72 protects injured lungs and ameliorates fibrosis through promoting post-injury repair of AECs.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/prevención & control , Pulmón/metabolismo , Proteínas de Motivos Tripartitos/biosíntesis , Células Epiteliales Alveolares/efectos de los fármacos , Animales , Bleomicina/toxicidad , Femenino , Células HEK293 , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Proteínas Recombinantes/biosíntesis
9.
Am J Respir Crit Care Med ; 198(4): 486-496, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29579397

RESUMEN

RATIONALE: The lung extracellular matrix (ECM) in idiopathic pulmonary fibrosis (IPF) mediates progression of fibrosis by decreasing fibroblast expression of miR-29 (microRNA-29), a master negative regulator of ECM production. The molecular mechanism is undefined. IPF-ECM is stiffer than normal. Stiffness drives fibroblast ECM production in a YAP (yes-associated protein)-dependent manner, and YAP is a known regulator of miR-29. Therefore, we tested the hypothesis that negative regulation of miR-29 by IPF-ECM was mediated by mechanotransduction of stiffness. OBJECTIVES: To determine how IPF-ECM negatively regulates miR-29. METHODS: We decellularized lung ECM using detergents and prepared polyacrylamide hydrogels of defined stiffness by varying acrylamide concentrations. Mechanistic studies were guided by immunohistochemistry of IPF lung and used cell culture, RNA-binding protein assays, and xenograft models. MEASUREMENTS AND MAIN RESULTS: Contrary to our hypothesis, we excluded fibroblast mechanotransduction of ECM stiffness as the primary mechanism deregulating miR-29. Instead, systematic examination of miR-29 biogenesis revealed a microRNA processing defect that impeded processing of miR-29 into its mature bioactive forms. Immunohistochemical analysis of the microRNA processing machinery in IPF lung specimens revealed decreased Dicer1 expression in the procollagen-rich myofibroblastic core of fibroblastic foci compared with the focus perimeter and adjacent alveolar walls. Mechanistically, IPF-ECM increased association of the Dicer1 transcript with RNA binding protein AUF1 (AU-binding factor 1), and Dicer1 knockdown conferred primary human lung fibroblasts with cell-autonomous fibrogenicity in zebrafish and mouse lung xenograft models. CONCLUSIONS: Our data identify suppression of fibroblast Dicer1 expression in the myofibroblast-rich IPF fibroblastic focus core as a central step in the mechanism by which the ECM sustains fibrosis progression in IPF.


Asunto(s)
ARN Helicasas DEAD-box/genética , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , MicroARNs/metabolismo , Ribonucleasa III/genética , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis/genética , Fibrosis/patología , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones , Pez Cebra
10.
J Am Soc Nephrol ; 29(10): 2493-2509, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097458

RESUMEN

BACKGROUND: Mutation of HNF1B, the gene encoding transcription factor HNF-1ß, is one cause of autosomal dominant tubulointerstitial kidney disease, a syndrome characterized by tubular cysts, renal fibrosis, and progressive decline in renal function. HNF-1ß has also been implicated in epithelial-mesenchymal transition (EMT) pathways, and sustained EMT is associated with tissue fibrosis. The mechanism whereby mutated HNF1B leads to tubulointerstitial fibrosis is not known. METHODS: To explore the mechanism of fibrosis, we created HNF-1ß-deficient mIMCD3 renal epithelial cells, used RNA-sequencing analysis to reveal differentially expressed genes in wild-type and HNF-1ß-deficient mIMCD3 cells, and performed cell lineage analysis in HNF-1ß mutant mice. RESULTS: The HNF-1ß-deficient cells exhibited properties characteristic of mesenchymal cells such as fibroblasts, including spindle-shaped morphology, loss of contact inhibition, and increased cell migration. These cells also showed upregulation of fibrosis and EMT pathways, including upregulation of Twist2, Snail1, Snail2, and Zeb2, which are key EMT transcription factors. Mechanistically, HNF-1ß directly represses Twist2, and ablation of Twist2 partially rescued the fibroblastic phenotype of HNF-1ß mutant cells. Kidneys from HNF-1ß mutant mice showed increased expression of Twist2 and its downstream target Snai2. Cell lineage analysis indicated that HNF-1ß mutant epithelial cells do not transdifferentiate into kidney myofibroblasts. Rather, HNF-1ß mutant epithelial cells secrete high levels of TGF-ß ligands that activate downstream Smad transcription factors in renal interstitial cells. CONCLUSIONS: Ablation of HNF-1ß in renal epithelial cells leads to the activation of a Twist2-dependent transcriptional network that induces EMT and aberrant TGF-ß signaling, resulting in renal fibrosis through a cell-nonautonomous mechanism.


Asunto(s)
Gota/genética , Gota/patología , Factor Nuclear 1-beta del Hepatocito/genética , Hiperuricemia/genética , Hiperuricemia/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Animales , Línea Celular , Linaje de la Célula/genética , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Fibrosis , Genes Dominantes , Gota/metabolismo , Factor Nuclear 1-beta del Hepatocito/deficiencia , Factor Nuclear 1-beta del Hepatocito/metabolismo , Humanos , Hiperuricemia/metabolismo , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 Relacionada con Twist/deficiencia , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L127-L136, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28860143

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease, but the mechanisms driving progression remain incompletely defined. We previously reported that the IPF lung harbors fibrogenic mesenchymal progenitor cells (MPCs), which serve as a cell of origin for IPF fibroblasts. Proliferating IPF MPCs are located at the periphery of fibroblastic foci in an active cellular front at the interface between the myofibroblast-rich focus core and adjacent normal alveolar structures. Among a large set of genes that distinguish IPF MPCs from their control counterparts, we identified IL-8 as a candidate mediator of IPF MPC fibrogenicity and driver of fibrotic progression. IPF MPCs and their progeny displayed increased steady-state levels of IL-8 and its cognate receptor CXCR1 and secreted more IL-8 than did controls. IL-8 functioned in an autocrine manner promoting IPF MPC self-renewal and the proliferation and motility of IPF MPC progeny. Secreted IL-8 also functioned in a paracrine manner stimulating macrophage migration. Analysis of IPF lung tissue demonstrated codistribution of IPF MPCs with activated macrophages in the active cellular front of the fibroblastic focus. These findings indicate that IPF MPC-derived IL-8 is capable of expanding the mesenchymal cell population and recruiting activated macrophages cells to actively evolving fibrotic lesions.


Asunto(s)
Movimiento Celular , Fibrosis Pulmonar Idiopática/patología , Interleucina-8/metabolismo , Células Madre Mesenquimatosas/patología , Proliferación Celular , Células Cultivadas , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Interleucina-8/genética , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal
12.
Am J Respir Cell Mol Biol ; 53(3): 391-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25612003

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by the relentless expansion of fibroblasts depositing type I collagen within the alveolar wall and obliterating the alveolar airspace. MicroRNA (miR)-29 is a potent regulator of collagen expression. In IPF, miR-29 levels are low, whereas type I collagen expression is high. However, the mechanism for suppression of miR-29 and increased type I collagen expression in IPF remains unclear. Here we show that when IPF fibroblasts are seeded on polymerized type I collagen, miR-29c levels are suppressed and type I collagen expression is high. In contrast, miR-29c is high and type I collagen expression is low in control fibroblasts. We demonstrate that the mechanism for suppression of miR-29 during IPF fibroblast interaction with polymerized collagen involves inappropriately low protein phosphatase (PP) 2A function, leading to histone deacetylase (HDA) C4 phosphorylation and decreased nuclear translocation of HDAC4. We demonstrate that overexpression of HDAC4 in IPF fibroblasts restored miR-29c levels and decreased type I collagen expression, whereas knocking down HDAC4 in control fibroblasts suppressed miR-29c levels and increased type I collagen expression. Our data indicate that IPF fibroblast interaction with polymerized type I collagen results in an aberrant PP2A/HDAC4 axis, which suppresses miR-29, causing a pathologic increase in type I collagen expression.


Asunto(s)
Colágeno Tipo I/metabolismo , Fibroblastos/enzimología , Histona Desacetilasas/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , MicroARNs/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Represoras/metabolismo , Núcleo Celular/enzimología , Células Cultivadas , Epigénesis Genética , Humanos , Fosforilación , Proteína Fosfatasa 2C , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Transducción de Señal
13.
Am J Pathol ; 184(5): 1369-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24631025

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis.


Asunto(s)
Fibroblastos/patología , Fibrosis Pulmonar Idiopática/patología , Animales , Línea Celular , Separación Celular , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Xenoinjertos , Humanos , Fibrosis Pulmonar Idiopática/genética , Células Madre Mesenquimatosas/patología , Ratones , Fenotipo , Transducción de Señal/genética , Pez Cebra
14.
Am J Physiol Lung Cell Mol Physiol ; 307(4): L283-94, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24951777

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by the relentless spread of fibroblasts from scarred alveoli into adjacent alveolar units, resulting in progressive hypoxia and death by asphyxiation. Although hypoxia is a prominent clinical feature of IPF, the role of hypoxia as a driver of the progressive fibrotic nature of the disease has not been explored. Here, we demonstrate that hypoxia robustly stimulates the proliferation of IPF fibroblasts. We found that miR-210 expression markedly increases in IPF fibroblasts in response to hypoxia and that knockdown of miR-210 decreases hypoxia-induced IPF fibroblast proliferation. Silencing hypoxia-inducible factor (HIF)-2α inhibits the hypoxia-mediated increase in miR-210 expression and blocks IPF fibroblast proliferation, indicating that HIF-2α is upstream of miR-210. We demonstrate that the miR-210 downstream target MNT is repressed in hypoxic IPF fibroblasts and that knockdown of miR-210 increases MNT expression. Overexpression of MNT inhibits hypoxia-induced IPF fibroblast proliferation. Together, these data indicate that hypoxia potently stimulates miR-210 expression via HIF-2α, and high miR-210 expression drives fibroblast proliferation by repressing the c-myc inhibitor, MNT. In situ analysis of IPF lung tissue demonstrates miR-210 expression in a similar distribution with HIF-2α and the hypoxic marker carbonic anhydrase-IX in cells within the IPF fibrotic reticulum. Our results raise the possibility that a pathological feed-forward loop exists in the IPF lung, in which hypoxia promotes IPF fibroblast proliferation via stimulation of miR-210 expression, which in turn worsens hypoxia.


Asunto(s)
Fibroblastos/fisiología , Hipoxia/fisiopatología , Fibrosis Pulmonar Idiopática/fisiopatología , MicroARNs/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Línea Celular , Proliferación Celular , Progresión de la Enfermedad , Fibroblastos/efectos de los fármacos , Humanos , Pulmón/patología , MicroARNs/biosíntesis , Proteínas Represoras/biosíntesis
15.
Proc Natl Acad Sci U S A ; 108(9): 3542-7, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21321231

RESUMEN

Uridine insertion/deletion RNA editing in kinetoplastid mitochondria corrects encoded frameshifts in mRNAs. The genetic information for editing resides in small guide RNAs (gRNAs), which form anchor duplexes just downstream of an editing site and mediate editing within a single editing "block." Many mRNAs require multiple gRNAs; the observed overall 3' to 5' polarity of editing is determined by the formation of upstream mRNA anchors by downstream editing. Hel61, a mitochondrial DEAD-box protein, was previously shown to be involved in RNA editing, but the functional role was not clear. Here we report that down-regulation of Hel61 [renamed REH1 (RNA editing helicase 1)] expression in Trypanosoma brucei selectively affects editing mediated by two or more overlapping gRNAs but has no effect on editing within a single block. Down-regulation produces an increased abundance of the gRNA/edited mRNA duplex for the first editing block of the A6 mRNA. Recombinant REH1 has an ATP-dependent double strand RNA unwinding activity in vitro with a model gRNA-mRNA duplex. These data indicate that REH1 is involved in gRNA displacement either directly by unwinding the gRNA/edited mRNA duplex or indirectly, to allow the 5' adjacent upstream gRNA to form an anchor duplex with the edited mRNA to initiate another block of editing. Purified tagged REH1 is associated with the RNA editing core complex by RNA linkers and a colocalization of REH1, REL1, and two kinetoplast ribosomal proteins with the kinetoplast DNA was observed by immunofluorescence, suggesting that editing, transcription, and translation may be functionally linked.


Asunto(s)
Mutación INDEL/genética , Proteínas Protozoarias/metabolismo , Edición de ARN/genética , ARN Helicasas/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Trypanosoma brucei brucei/enzimología , Uridina/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Regulación hacia Abajo/genética , Espacio Intracelular/metabolismo , Mitocondrias/metabolismo , Transporte de Proteínas , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/metabolismo , Trypanosoma brucei brucei/genética
16.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36656644

RESUMEN

Hypoxia is a sentinel feature of idiopathic pulmonary fibrosis (IPF). The IPF microenvironment contains high lactate levels, and hypoxia enhances cellular lactate production. Lactate, acting through the GPR81 lactate receptor, serves as a signal molecule regulating cellular processes. We previously identified intrinsically fibrogenic mesenchymal progenitor cells (MPCs) that drive fibrosis in the lungs of patients with IPF. However, whether hypoxia enhances IPF MPC fibrogenicity is unclear. We hypothesized that hypoxia increases IPF MPC fibrogenicity via lactate and its cognate receptor GPR81. Here we show that hypoxia promotes IPF MPC self-renewal. The mechanism involves hypoxia-mediated enhancement of LDHA function and lactate production and release. Hypoxia also increases HIF1α levels, and this increase in turn augments the expression of GPR81. Exogenous lactate operating through GPR81 promotes IPF MPC self-renewal. IHC analysis of IPF lung tissue demonstrates IPF MPCs expressing GPR81 and hypoxic markers on the periphery of the fibroblastic focus. We show that hypoxia enhances IPF MPC fibrogenicity in vivo. We demonstrate that knockdown of GPR81 inhibits hypoxia-induced IPF MPC self-renewal in vitro and attenuates hypoxia-induced IPF MPC fibrogenicity in vivo. Our data demonstrate that hypoxia creates a feed-forward loop that augments IPF MPC fibrogenicity via the lactate/GPR81/HIF1α pathway.


Asunto(s)
Fibrosis Pulmonar Idiopática , Células Madre Mesenquimatosas , Humanos , Ácido Láctico/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Transducción de Señal , Células Madre Mesenquimatosas/metabolismo , Hipoxia/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-35379658

RESUMEN

Mechanical variables such as stiffness, stress, strain, and fluid shear stress are central to tissue functions, thus, must be maintained within the proper range. Mechanics are especially important in the cardiovascular system and lung, the functions of which are essentially mechanical. Mechanical homeostasis is characterized by negative feedback in which deviations from the optimal value or set point activates mechanisms to return the system to the correct range. In chronic diseases, homeostatic mechanisms are generally overcome or replaced with positive feedback loops that promote disease progression. Recent work has shown that microRNAs (miRNAs) are essential to mechanical homeostasis in a number of biological systems and that perturbations to miRNA biogenesis play key roles in cardiovascular and pulmonary diseases. In this review, we integrate current knowledge of miRNAs in mechanical homeostasis and how these mechanisms are altered in disease.


Asunto(s)
MicroARNs , Progresión de la Enfermedad , Homeostasis , Humanos , MicroARNs/genética , Estrés Mecánico
18.
JCI Insight ; 7(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35852874

RESUMEN

Usual interstitial pneumonia (UIP) is a histological pattern characteristic of idiopathic pulmonary fibrosis (IPF). The UIP pattern is patchy with histologically normal lung adjacent to dense fibrotic tissue. At this interface, fibroblastic foci (FF) are present and are sites where myofibroblasts and extracellular matrix (ECM) accumulate. Utilizing laser capture microdissection-coupled mass spectrometry, we interrogated the FF, adjacent mature scar, and adjacent alveoli in 6 fibrotic (UIP/IPF) specimens plus 6 nonfibrotic alveolar specimens as controls. The data were subjected to qualitative and quantitative analysis and histologically validated. We found that the fibrotic alveoli protein signature is defined by immune deregulation as the strongest category. The fibrotic mature scar classified as end-stage fibrosis whereas the FF contained an overabundance of a distinctive ECM compared with the nonfibrotic control. Furthermore, FF were positive for both TGFB1 and TGFB3, whereas the aberrant basaloid cell lining of FF was predominantly positive for TGFB2. In conclusion, spatial proteomics demonstrated distinct protein compositions in the histologically defined regions of UIP/IPF tissue. These data revealed that FF are the main site of collagen biosynthesis and that the adjacent alveoli are abnormal. This essential information will inform future mechanistic studies on fibrosis progression.


Asunto(s)
Fibrosis Pulmonar Idiopática , Cicatriz/patología , Colágeno , Matriz Extracelular/patología , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/patología
19.
Life Sci Alliance ; 4(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34127548

RESUMEN

IL-13 is implicated in effective repair after acute lung injury and the pathogenesis of chronic diseases such as allergic asthma. Both these processes involve matrix remodelling, but understanding the specific contribution of IL-13 has been challenging because IL-13 shares receptors and signalling pathways with IL-4. Here, we used Nippostrongylus brasiliensis infection as a model of acute lung damage comparing responses between WT and IL-13-deficient mice, in which IL-4 signalling is intact. We found that IL-13 played a critical role in limiting tissue injury and haemorrhaging in the lung, and through proteomic and transcriptomic profiling, identified IL-13-dependent changes in matrix and associated regulators. We further showed a requirement for IL-13 in the induction of epithelial-derived type 2 effector molecules such as RELM-α and surfactant protein D. Pathway analyses predicted that IL-13 induced cellular stress responses and regulated lung epithelial cell differentiation by suppression of Foxa2 pathways. Thus, in the context of acute lung damage, IL-13 has tissue-protective functions and regulates epithelial cell responses during type 2 immunity.


Asunto(s)
Lesión Pulmonar Aguda/parasitología , Interleucina-13/deficiencia , Nippostrongylus/patogenicidad , Infecciones por Strongylida/genética , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Proteómica , Infecciones por Strongylida/metabolismo , Regulación hacia Arriba
20.
Sci Rep ; 10(1): 11162, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636398

RESUMEN

In Idiopathic Pulmonary Fibrosis (IPF), there is unrelenting scarring of the lung mediated by pathological mesenchymal progenitor cells (MPCs) that manifest autonomous fibrogenicity in xenograft models. To determine where along their differentiation trajectory IPF MPCs acquire fibrogenic properties, we analyzed the transcriptome of 335 MPCs isolated from the lungs of 3 control and 3 IPF patients at the single-cell level. Using transcriptional entropy as a metric for differentiated state, we found that the least differentiated IPF MPCs displayed the largest differences in their transcriptional profile compared to control MPCs. To validate entropy as a surrogate for differentiated state functionally, we identified increased CD44 as a characteristic of the most entropic IPF MPCs. Using FACS to stratify IPF MPCs based on CD44 expression, we determined that CD44hi IPF MPCs manifested an increased capacity for anchorage-independent colony formation compared to CD44lo IPF MPCs. To validate our analysis morphologically, we used two differentially expressed genes distinguishing IPF MPCs from control (CD44, cell surface; and MARCKS, intracellular). In IPF lung tissue, pathological MPCs resided in the highly cellular perimeter region of the fibroblastic focus. Our data support the concept that IPF fibroblasts acquire a cell-autonomous pathological phenotype early in their differentiation trajectory.


Asunto(s)
Diferenciación Celular , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Análisis de Secuencia de ARN , Estudios de Casos y Controles , Diferenciación Celular/genética , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Receptores de Hialuranos/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Células Madre Mesenquimatosas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA