Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Labelled Comp Radiopharm ; 67(2): 59-66, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171540

RESUMEN

The σ-1 receptor is a non-opioid transmembrane protein involved in various human pathologies including neurodegenerative diseases, inflammation, and cancer. The previously published ligand [18 F]FTC-146 is among the most promising tools for σ-1 molecular imaging by positron emission tomography (PET), with a potential for application in clinical diagnostics and research. However, the published six- or four-step synthesis of the tosyl ester precursor for its radiosynthesis is complicated and time-consuming. Herein, we present a simple one-step precursor synthesis followed by a one-step fluorine-18 labeling procedure that streamlines the preparation of [18 F]FTC-146. Instead of a tosyl-based precursor, we developed a one-step synthesis of the precursor analog AM-16 containing a chloride leaving group for the SN 2 reaction with 18 F-fluoride. 18 F-fluorination of AM-16 led to a moderate decay-corrected radiochemical yield (RCY = 7.5%) with molar activity (Am ) of 45.9 GBq/µmol. Further optimization of this procedure should enable routine radiopharmaceutical production of this promising PET tracer.


Asunto(s)
Tomografía de Emisión de Positrones , Receptor Sigma-1 , Humanos , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor/química , Azepinas , Benzotiazoles , Radiofármacos
2.
Ups J Med Sci ; 1292024.
Artículo en Inglés | MEDLINE | ID: mdl-38863725

RESUMEN

Background: The development of bispecific antibodies that can traverse the blood-brain barrier has paved the way for brain-directed immunotherapy and when radiolabelled, immunoPET imaging. The objective of this study was to investigate how indium-111 (111In) radiolabelling with compatible chelators affects the brain delivery and peripheral biodistribution of the bispecific antibody RmAb158-scFv8D3, which binds to amyloid-beta (Aß) and the transferrin receptor (TfR), in Aß pathology-expressing tg-ArcSwe mice and aged-matched wild-type control mice. Methods: Bispecific RmAb158-scFv8D3 (biAb) was radiolabelled with 111In using CHX-A"-DTPA, DOTA, or DOTA-tetrazine (DOTA-Tz). Affinity toward TfR and Aß, as well as stability, was investigated in vitro. Mice were then intravenously administered with the three different radiolabelled biAb variants, and blood samples were collected for monitoring pharmacokinetics. Brain concentration was quantified after 2 and 72 h, and organ-specific retention was measured at 72 h by gamma counting. A subset of mice also underwent whole-body Single-photon emission computed tomography (SPECT) scanning at 72 h after injection. Following post-mortem isolation, the brains of tg-ArcSwe and WT mice were sectioned, and the spatial distribution of biAb was further investigated with autoradiography. Results: All three [111In]biAb variants displayed similar blood pharmacokinetics and brain uptake at 2 h after administration. Radiolabelling did not compromise affinity, and all variants showed good stability, especially the DOTA-Tz variant. Whole-body SPECT scanning indicated high liver, spleen, and bone accumulation of all [111In]biAb variants. Subsequent ex vivo measurement of organ retention confirmed SPECT data, with retention in the spleen, liver, and bone - with very high bone marrow retention. Ex vivo gamma measurement of brain tissue, isolated at 72 h post-injection, and ex vivo autoradiography showed that WT mice, despite the absence of Aß, exhibited comparable brain concentrations of [111In]biAb as those found in the tg-ArcSwe brain. Conclusions: The successful 111In-labelling of biAb with retained binding to TfR and Aß, and retained ability to enter the brain, demonstrated that 111In can be used to generate radioligands for brain imaging. A high degree of [111In]biAb in bone marrow and intracellular accumulation in brain tissue indicated some off-target interactions or potential interaction with intrabrain TfR resulting in a relatively high non-specific background signal.


Asunto(s)
Péptidos beta-Amiloides , Encéfalo , Radioisótopos de Indio , Tomografía Computarizada de Emisión de Fotón Único , Animales , Tomografía Computarizada de Emisión de Fotón Único/métodos , Ratones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Distribución Tisular , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Anticuerpos Biespecíficos/farmacocinética , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/diagnóstico por imagen , Receptores de Transferrina/metabolismo , Receptores de Transferrina/inmunología , Radiofármacos/farmacocinética , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo
3.
EJNMMI Radiopharm Chem ; 9(1): 21, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446356

RESUMEN

BACKGROUND: The brain is a challenging target for antibody-based positron emission tomography (immunoPET) imaging due to the restricted access of antibody-based ligands through the blood-brain barrier (BBB). To overcome this physiological obstacle, we have previously developed bispecific antibody ligands that pass through the BBB via receptor-mediated transcytosis. While these radiolabelled ligands have high affinity and specificity, their long residence time in the blood and brain, typical for large molecules, poses another challenge for PET imaging. A viable solution could be a two-step pre-targeting approach which involves the administration of a tagged antibody that accumulates at the target site in the brain and then clears from the blood, followed by administration of a small radiolabelled molecule with fast kinetics. This radiolabelled molecule can couple to the tagged antibody and thereby make the antibody localisation visible by PET imaging. The in vivo linkage can be achieved by using the inverse electron demand Diels-Alder reaction (IEDDA), with trans-cyclooctene (TCO) and tetrazine groups participating as reactants. In this study, two novel 18F-labelled tetrazines were synthesized and evaluated for their potential use as pre-targeting imaging agents, i.e., for their ability to rapidly enter the brain and, if unbound, to be efficiently cleared with minimal background retention. RESULTS: The two compounds, a methyl tetrazine [18F]MeTz and an H-tetrazine [18F]HTz were radiolabelled using a two-step procedure via [18F]F-Py-TFP synthesized on solid support followed by amidation with amine-bearing tetrazines, resulting in radiochemical yields of 24% and 22%, respectively, and a radiochemical purity of > 96%. In vivo PET imaging was performed to assess their suitability for in vivo pre-targeting. Time-activity curves from PET-scans showed [18F]MeTz to be the more pharmacokinetically suitable agent, given its fast and homogenous distribution in the brain and rapid clearance. However, in terms of rection kinetics, H-tetrazines are advantageous, exhibiting faster reaction rates in IEDDA reactions with dienophiles like trans-cyclooctenes, making [18F]HTz potentially more beneficial for pre-targeting applications. CONCLUSION: This study demonstrates a significant potential of [18F]MeTz and [18F]HTz as agents for pre-targeted PET brain imaging due to their efficient brain uptake, swift clearance and appropriate chemical stability.

4.
PLoS One ; 19(4): e0300466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626058

RESUMEN

Pretargeting, which is the separation of target accumulation and the administration of a secondary imaging agent into two sequential steps, offers the potential to improve image contrast and reduce radiation burden for nuclear imaging. In recent years, the tetrazine ligation has emerged as a promising approach to facilitate covalent pretargeted imaging due to its unprecedented kinetics and bioorthogonality. Pretargeted bone imaging with TCO-modified alendronic acid (Aln-TCO) is an attractive model that allows the evaluation of tetrazines in healthy animals without the need for complex disease models or targeting regimens. Recent structure-activity relationship studies of tetrazines evaluated important parameters for the design of potent tetrazine-radiotracers for pretargeted imaging. However, limited information is available for 99mTc-labeled tetrazines. In this study, four tetrazines intended for labeling with fac-[99mTc(OH2)3 (CO)3]+ were synthesized and evaluated using an Aln-TCO mouse model. 3,6-bis(2-pyridyl)-1,2,4,5-Tz without additional linker showed higher pretargeted bone uptake and less background activity compared to the same scaffold with a PEG8 linker or 3-phenyl-1,2,4,5-Tz-based compounds. Additionally, improved bone/blood ratios were observed in pretargeted animals compared to animals receiving directly labeled Aln-TCO. The results of this study implicate 3,6-bis(2-pyridyl)-1,2,4,5-Tz as a promising scaffold for potential 99mTc-labeled tetrazines.


Asunto(s)
Compuestos Heterocíclicos , Tomografía Computarizada por Rayos X , Animales , Ratones , Tomografía Computarizada de Emisión de Fotón Único/métodos , Línea Celular Tumoral , Radiofármacos , Tomografía de Emisión de Positrones/métodos
5.
Nucl Med Biol ; 132-133: 108905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38555651

RESUMEN

DOTATATE is a somatostatin peptide analog used in the clinic to detect somatostatin receptors which are highly expressed on neuroendocrine tumors. Somatostatin receptors are found naturally in the intestines, pancreas, lungs, and brain (mainly cortex). In vivo measurement of the somatostatin receptors in the cortex has been challenging because available tracers cannot cross the blood-brain barrier (BBB) due to their intrinsic polarity. A peptide called melittin, a main component of honeybee venom, has been shown to disrupt plasma membranes and increase the permeability of biological membranes. In this study, we assessed the feasibility of using melittin to facilitate the passage of [64Cu]Cu-DOTATATE through the BBB and its binding to somatostatin receptors in the cortex. Evaluation included in vitro autoradiography on Long Evans rat brains to estimate the binding affinity of [64Cu]Cu-DOTATATE to the somatostatin receptors in the cortex and an in vivo evaluation of [64Cu]Cu-DOTATATE binding in NMRI mice after injection of melittin. This study found an in vitro Bmax = 89 ± 4 nM and KD = 4.5 ± 0.6 nM in the cortex, resulting in a theoretical binding potential (BP) calculated as Bmax/KD ≈ 20, which is believed suitable for in vivo brain PET imaging. However, the in vivo results showed no significant difference between the control and melittin injected mice, indicating that the honeybee venom failed to open the BBB. Additional experiments, potentially involving faster injection rates are required to verify that melittin can increase brain uptake of non-BBB permeable PET tracers. Furthermore, an evaluation of whether a venom with a narrow therapeutic range can be used for clinical purposes needs to be considered.


Asunto(s)
Barrera Hematoencefálica , Estudios de Factibilidad , Meliteno , Compuestos Organometálicos , Tomografía de Emisión de Positrones , Receptores de Somatostatina , Animales , Receptores de Somatostatina/metabolismo , Meliteno/química , Meliteno/metabolismo , Ratas , Tomografía de Emisión de Positrones/métodos , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/farmacocinética , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/diagnóstico por imagen , Masculino , Ratones , Radioisótopos de Cobre , Octreótido/análogos & derivados
6.
Nucl Med Biol ; 128-129: 108877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38232579

RESUMEN

Brain pretargeted nuclear imaging for the diagnosis of various neurodegenerative diseases is a quickly developing field. The tetrazine ligation is currently the most explored approach to achieve this goal due to its remarkable properties. In this work, we evaluated the performance of F-537-Tetrazine, previously developed by Biogen, and N-(3-[18F]fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine, previously developed in our group, thereby allowing for the direct comparison of these two imaging probes. The evaluation included synthesis, radiolabeling and a comparison of the physicochemical properties of the compounds. Furthermore, their performance was evaluated by in vitro and in vivo pretargeting models. This study indicated that N-(3-[18F] fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine might be more suited for brain pretargeted imaging.


Asunto(s)
Aminas , Compuestos Heterocíclicos , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen
7.
J Nucl Med ; 65(4): 593-599, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38423784

RESUMEN

The application of prostate-specific membrane antigen (PSMA)-targeted α-therapy is a promising alternative to ß--particle-based treatments. 211At is among the potential α-emitters that are favorable for this concept. Herein, 211At-based PSMA radiopharmaceuticals were designed, developed, and evaluated. Methods: To identify a 211At-labeled lead, a surrogate strategy was applied. Because astatine does not exist as a stable nuclide, it is commonly replaced with iodine to mimic the pharmacokinetic behavior of the corresponding 211At-labeled compounds. To facilitate the process of structural design, iodine-based candidates were radiolabeled with the PET radionuclide 68Ga to study their preliminary in vitro and in vivo properties before the desired 211At-labeled lead compound was formed. The most promising candidate from this evaluation was chosen to be 211At-labeled and tested in biodistribution studies. Results: All 68Ga-labeled surrogates displayed affinities in the nanomolar range and specific internalization in PSMA-positive LNCaP cells. PET imaging of these compounds identified [68Ga]PSGa-3 as the lead compound. Subsequently, [211At]PSAt-3-Ga was synthesized in a radiochemical yield of 35% and showed tumor uptake of 19 ± 8 percentage injected dose per gram of tissue (%ID/g) at 1 h after injection and 7.6 ± 2.9 %ID/g after 24 h. Uptake in off-target tissues such as the thyroid (2.0 ± 1.1 %ID/g), spleen (3.0 ± 0.6 %ID/g), or stomach (2.0 ± 0.4 %ID/g) was low, indicating low in vivo deastatination of [211At]PSAt-3-Ga. Conclusion: The reported findings support the use of iodine-based and 68Ga-labeled variants as a convenient strategy for developing astatinated compounds and confirm [211At]PSAt-3 as a promising radiopharmaceutical for targeted α-therapy.


Asunto(s)
Yodo , Neoplasias de la Próstata , Masculino , Humanos , Radioisótopos de Galio , Distribución Tisular , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/patología , Tomografía de Emisión de Positrones/métodos , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Radiofármacos/farmacocinética , Línea Celular Tumoral
8.
J Med Chem ; 67(14): 11975-11988, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38981131

RESUMEN

The postsynaptic density (PSD) comprises numerous scaffolding proteins, receptors, and signaling molecules that coordinate synaptic transmission in the brain. Postsynaptic density protein 95 (PSD-95) is a master scaffold protein within the PSD and one of its most abundant proteins and therefore constitutes a very attractive biomarker of PSD function and its pathological changes. Here, we exploit a high-affinity inhibitor of PSD-95, AVLX-144, as a template for developing probes for molecular imaging of the PSD. AVLX-144-based probes were labeled with the radioisotopes fluorine-18 and tritium, as well as a fluorescent tag. Tracer binding showed saturable, displaceable, and uneven distribution in rat brain slices, proving effective in quantitative autoradiography and cell imaging studies. Notably, we observed diminished tracer binding in human post-mortem Parkinson's disease (PD) brain slices, suggesting postsynaptic impairment in PD. We thus offer a suite of translational probes for visualizing and understanding PSD-related pathologies.


Asunto(s)
Encéfalo , Homólogo 4 de la Proteína Discs Large , Densidad Postsináptica , Animales , Humanos , Homólogo 4 de la Proteína Discs Large/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Ratas , Densidad Postsináptica/metabolismo , Imagen Molecular/métodos , Radioisótopos de Flúor/química , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Péptidos/química , Péptidos/metabolismo , Sondas Moleculares/química , Masculino , Autorradiografía , Ratas Sprague-Dawley , Tritio , Piridinas , Pirrolidinonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA