Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(6): 1189-1193, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32442404
2.
Nat Methods ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649742

RESUMEN

Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.

3.
EMBO Rep ; 24(10): e57600, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37671834

RESUMEN

Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a human-specific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesity-linked regulator of adipocyte plasticity and mitochondrial function in humans.

4.
EMBO Rep ; 24(10): e55981, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37560809

RESUMEN

Accumulation of excess nutrients hampers proper liver function and is linked to nonalcoholic fatty liver disease (NAFLD) in obesity. However, the signals responsible for an impaired adaptation of hepatocytes to obesogenic dietary cues remain still largely unknown. Post-translational modification by the small ubiquitin-like modifier (SUMO) allows for a dynamic regulation of numerous processes including transcriptional reprogramming. We demonstrate that specific SUMOylation of transcription factor Prox1 represents a nutrient-sensitive determinant of hepatic fasting metabolism. Prox1 is highly SUMOylated on lysine 556 in the liver of ad libitum and refed mice, while this modification is abolished upon fasting. In the context of diet-induced obesity, Prox1 SUMOylation becomes less sensitive to fasting cues. The hepatocyte-selective knock-in of a SUMOylation-deficient Prox1 mutant into mice fed a high-fat/high-fructose diet leads to a reduction of systemic cholesterol levels, associated with the induction of liver bile acid detoxifying pathways during fasting. The generation of tools to maintain the nutrient-sensitive SUMO-switch on Prox1 may thus contribute to the development of "fasting-based" approaches for the preservation of metabolic health.

5.
Biochem J ; 481(1): 33-44, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38112318

RESUMEN

Advanced glycation end products (AGEs) are non-enzymatic post-translational modifications of amino acids and are associated with diabetic complications. One proposed pathomechanism is the impaired processing of AGE-modified proteins or peptides including prohormones. Two approaches were applied to investigate whether substrate modification with AGEs affects the processing of substrates like prohormones to the active hormones. First, we employed solid-phase peptide synthesis to generate unmodified as well as AGE-modified protease substrates. Activity of proteases towards these substrates was quantified. Second, we tested the effect of AGE-modified proinsulin on the processing to insulin. Proteases showed the expected activity towards the unmodified peptide substrates containing arginine or lysine at the C-terminal cleavage site. Indeed, modification with Nε-carboxymethyllysine (CML) or methylglyoxal-hydroimidazolone 1 (MG-H1) affected all proteases tested. Cysteine cathepsins displayed a reduction in activity by ∼50% towards CML and MG-H1 modified substrates. The specific proteases trypsin, proprotein convertases subtilisin-kexins (PCSKs) type proteases, and carboxypeptidase E (CPE) were completely inactive towards modified substrates. Proinsulin incubation with methylglyoxal at physiological concentrations for 24 h resulted in the formation of MG-modified proinsulin. The formation of insulin was reduced by up to 80% in a concentration-dependent manner. Here, we demonstrate the inhibitory effect of substrate-AGE modifications on proteases. The finding that PCSKs and CPE, which are essential for prohormone processing, are inactive towards modified substrates could point to a yet unrecognized pathomechanism resulting from AGE modification relevant for the etiopathogenesis of diabetes and the development of obesity.


Asunto(s)
Diabetes Mellitus , Productos Finales de Glicación Avanzada , Humanos , Piruvaldehído/metabolismo , Proinsulina , Péptidos/química , Endopeptidasas
6.
Diabetologia ; 67(2): 275-289, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38019287

RESUMEN

AIMS/HYPOTHESIS: Quantitative sensory testing (QST) allows the identification of individuals with rapid progression of diabetic sensorimotor polyneuropathy (DSPN) based on certain sensory phenotypes. Hence, the aim of this study was to investigate the relationship of these phenotypes with the structural integrity of the sciatic nerve among individuals with type 2 diabetes. METHODS: Seventy-six individuals with type 2 diabetes took part in this cross-sectional study and underwent QST of the right foot and high-resolution magnetic resonance neurography including diffusion tensor imaging of the right distal sciatic nerve to determine the sciatic nerve fractional anisotropy (FA) and cross-sectional area (CSA), both of which serve as markers of structural integrity of peripheral nerves. Participants were then assigned to four sensory phenotypes (participants with type 2 diabetes and healthy sensory profile [HSP], thermal hyperalgesia [TH], mechanical hyperalgesia [MH], sensory loss [SL]) by a standardised sorting algorithm based on QST. RESULTS: Objective neurological deficits showed a gradual increase across HSP, TH, MH and SL groups, being higher in MH compared with HSP and in SL compared with HSP and TH. The number of participants categorised as HSP, TH, MH and SL was 16, 24, 17 and 19, respectively. There was a gradual decrease of the sciatic nerve's FA (HSP 0.444, TH 0.437, MH 0.395, SL 0.382; p=0.005) and increase of CSA (HSP 21.7, TH 21.5, MH 25.9, SL 25.8 mm2; p=0.011) across the four phenotypes. Further, MH and SL were associated with a lower sciatic FA (MH unstandardised regression coefficient [B]=-0.048 [95% CI -0.091, -0.006], p=0.027; SL B=-0.062 [95% CI -0.103, -0.020], p=0.004) and CSA (MH ß=4.3 [95% CI 0.5, 8.0], p=0.028; SL B=4.0 [95% CI 0.4, 7.7], p=0.032) in a multivariable regression analysis. The sciatic FA correlated negatively with the sciatic CSA (r=-0.35, p=0.002) and markers of microvascular damage (high-sensitivity troponin T, urine albumin/creatinine ratio). CONCLUSIONS/INTERPRETATION: The most severe sensory phenotypes of DSPN (MH and SL) showed diminishing sciatic nerve structural integrity indexed by lower FA, likely representing progressive axonal loss, as well as increasing CSA of the sciatic nerve, which cannot be detected in individuals with TH. Individuals with type 2 diabetes may experience a predefined cascade of nerve fibre damage in the course of the disease, from healthy to TH, to MH and finally SL, while structural changes in the proximal nerve seem to precede the sensory loss of peripheral nerves and indicate potential targets for the prevention of end-stage DSPN. TRIAL REGISTRATION: ClinicalTrials.gov NCT03022721.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Humanos , Imagen de Difusión Tensora/métodos , Estudios Transversales , Nervio Ciático , Fenotipo
7.
EMBO J ; 39(11): e103477, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32338774

RESUMEN

Diabetes-associated organ fibrosis, marked by elevated cellular senescence, is a growing health concern. Intriguingly, the mechanism underlying this association remained unknown. Moreover, insulin alone can neither reverse organ fibrosis nor the associated secretory phenotype, favoring the exciting notion that thus far unknown mechanisms must be operative. Here, we show that experimental type 1 and type 2 diabetes impairs DNA repair, leading to senescence, inflammatory phenotypes, and ultimately fibrosis. Carbohydrates were found to trigger this cascade by decreasing the NAD+ /NADH ratio and NHEJ-repair in vitro and in diabetes mouse models. Restoring DNA repair by nuclear over-expression of phosphomimetic RAGE reduces DNA damage, inflammation, and fibrosis, thereby restoring organ function. Our study provides a novel conceptual framework for understanding diabetic fibrosis on the basis of persistent DNA damage signaling and points to unprecedented approaches to restore DNA repair capacity for resolution of fibrosis in patients with diabetes.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células A549 , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Fibrosis , Células HEK293 , Humanos
8.
Hepatology ; 78(4): 1092-1105, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37055018

RESUMEN

BACKGROUND AND AIMS: Chronic liver disease is a growing epidemic, leading to fibrosis and cirrhosis. TGF-ß is the pivotal profibrogenic cytokine that activates HSC, yet other molecules can modulate TGF-ß signaling during liver fibrosis. Expression of the axon guidance molecules semaphorins (SEMAs), which signal through plexins and neuropilins (NRPs), have been associated with liver fibrosis in HBV-induced chronic hepatitis. This study aims at determining their function in the regulation of HSCs. APPROACH AND RESULTS: We analyzed publicly available patient databases and liver biopsies. We used transgenic mice, in which genes are deleted only in activated HSCs to perform ex vivo analysis and animal models. SEMA3C is the most enriched member of the semaphorin family in liver samples from patients with cirrhosis. Higher expression of SEMA3C in patients with NASH, alcoholic hepatitis, or HBV-induced hepatitis discriminates those with a more profibrotic transcriptomic profile. SEMA3C expression is also elevated in different mouse models of liver fibrosis and in isolated HSCs on activation. In keeping with this, deletion of SEMA3C in activated HSCs reduces myofibroblast marker expression. Conversely, SEMA3C overexpression exacerbates TGF-ß-mediated myofibroblast activation, as shown by increased SMAD2 phosphorylation and target gene expression. Among SEMA3C receptors, only NRP2 expression is maintained on activation of isolated HSCs. Interestingly, lack of NRP2 in those cells reduces myofibroblast marker expression. Finally, deletion of either SEMA3C or NRP2, specifically in activated HSCs, reduces liver fibrosis in mice. CONCLUSION: SEMA3C is a novel marker for activated HSCs that plays a fundamental role in the acquisition of the myofibroblastic phenotype and liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Semaforinas , Animales , Humanos , Ratones , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Fosforilación , Semaforinas/genética , Semaforinas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
9.
Cardiovasc Diabetol ; 23(1): 104, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504284

RESUMEN

The 9th Cardiovascular Outcome Trial (CVOT) Summit: Congress on Cardiovascular, Kidney, and Metabolic Outcomes was held virtually on November 30-December 1, 2023. This reference congress served as a platform for in-depth discussions and exchange on recently completed outcomes trials including dapagliflozin (DAPA-MI), semaglutide (SELECT and STEP-HFpEF) and bempedoic acid (CLEAR Outcomes), and the advances they represent in reducing the risk of major adverse cardiovascular events (MACE), improving metabolic outcomes, and treating obesity-related heart failure with preserved ejection fraction (HFpEF). A broad audience of endocrinologists, diabetologists, cardiologists, nephrologists and primary care physicians participated in online discussions on guideline updates for the management of cardiovascular disease (CVD) in diabetes, heart failure (HF) and chronic kidney disease (CKD); advances in the management of type 1 diabetes (T1D) and its comorbidities; advances in the management of CKD with SGLT2 inhibitors and non-steroidal mineralocorticoid receptor antagonists (nsMRAs); and advances in the treatment of obesity with GLP-1 and dual GIP/GLP-1 receptor agonists. The association of diabetes and obesity with nonalcoholic steatohepatitis (NASH; metabolic dysfunction-associated steatohepatitis, MASH) and cancer and possible treatments for these complications were also explored. It is generally assumed that treatment of chronic diseases is equally effective for all patients. However, as discussed at the Summit, this assumption may not be true. Therefore, it is important to enroll patients from diverse racial and ethnic groups in clinical trials and to analyze patient-reported outcomes to assess treatment efficacy, and to develop innovative approaches to tailor medications to those who benefit most with minimal side effects. Other keys to a successful management of diabetes and comorbidities, including dementia, entail the use of continuous glucose monitoring (CGM) technology and the implementation of appropriate patient-physician communication strategies. The 10th Cardiovascular Outcome Trial Summit will be held virtually on December 5-6, 2024 ( http://www.cvot.org ).


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Insuficiencia Cardíaca , Insuficiencia Renal Crónica , Humanos , Insuficiencia Cardíaca/complicaciones , Automonitorización de la Glucosa Sanguínea , Volumen Sistólico , Glucemia , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Obesidad/complicaciones , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia , Diabetes Mellitus/tratamiento farmacológico , Riñón , Diabetes Mellitus Tipo 2/tratamiento farmacológico
10.
J Pept Sci ; : e3611, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714526

RESUMEN

Small interfering RNA (siRNA) has emerged as a valuable tool to address RNA interference (RNAi) to modulate gene expression also in therapy. However, challenges such as inefficient cell targeting and rapid degradation in biological systems have limited its success. To address these issues, the development of a receptor-specific shuttle system represents a promising solution. [F7,P34]-NPY analogues were modified by solid-phase peptide synthesis, enabling non-covalent conjugation with siRNA. This modification yielded an efficient siRNA vehicle capable of binding and transporting its cargo into target cells without adversely affecting receptor activation or cell viability. Mass spectrometry and gel shift assays confirmed successful and stable siRNA binding under various conditions. Microscopy experiments further demonstrated the co-internalization of labeled peptides and siRNA in Hepa1c1 cells, highlighting the stability of the complex. In vitro quantitative RT-PCR experiments, targeting the TSC22D4 gene to normalize systemic glucose homeostasis and insulin resistance, revealed a functional peptide-based siRNA shuttle system with the ability to decrease mRNA expression to approximately 40%. These findings strengthen the potential of receptor-specific siRNA shuttle systems as efficient tools for gene therapy that offer a possibility for reducing side effects.

11.
Mol Ther ; 31(8): 2408-2421, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37408309

RESUMEN

Cancer cachexia is a severe systemic wasting disease that negatively affects quality of life and survival in patients with cancer. To date, treating cancer cachexia is still a major unmet clinical need. We recently discovered the destabilization of the AMP-activated protein kinase (AMPK) complex in adipose tissue as a key event in cachexia-related adipose tissue dysfunction and developed an adeno-associated virus (AAV)-based approach to prevent AMPK degradation and prolong cachexia-free survival. Here, we show the development and optimization of a prototypic peptide, Pen-X-ACIP, where the AMPK-stabilizing peptide ACIP is fused to the cell-penetrating peptide moiety penetratin via a propargylic glycine linker to enable late-stage functionalization using click chemistry. Pen-X-ACIP was efficiently taken up by adipocytes, inhibited lipolysis, and restored AMPK signaling. Tissue uptake assays showed a favorable uptake profile into adipose tissue upon intraperitoneal injection. Systemic delivery of Pen-X-ACIP into tumor-bearing animals prevented the progression of cancer cachexia without affecting tumor growth and preserved body weight and adipose tissue mass with no discernable side effects in other peripheral organs, thereby achieving proof of concept. As Pen-X-ACIP also exerted its anti-lipolytic activity in human adipocytes, it now provides a promising platform for further (pre)clinical development toward a novel, first-in-class approach against cancer cachexia.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias , Animales , Humanos , Tejido Adiposo/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Neoplasias/complicaciones , Neoplasias/metabolismo , Péptidos/farmacología , Preparaciones Farmacéuticas/metabolismo , Calidad de Vida
12.
Cancer Metastasis Rev ; 41(3): 517-547, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074318

RESUMEN

Obesity is an established risk factor for several human cancers. Given the association between excess body weight and cancer, the increasing rates of obesity worldwide are worrisome. A variety of obesity-related factors has been implicated in cancer initiation, progression, and response to therapy. These factors include circulating nutritional factors, hormones, and cytokines, causing hyperinsulinemia, inflammation, and adipose tissue dysfunction. The impact of these conditions on cancer development and progression has been the focus of extensive literature. In this review, we concentrate on processes that can link obesity and cancer, and which provide a novel perspective: extracellular matrix remodeling, angiogenesis, and adrenergic signaling. We describe molecular mechanisms involved in these processes, which represent putative targets for intervention. Liver, pancreas, and breast cancers were chosen as exemplary disease models. In view of the expanding epidemic of obesity, a better understanding of the tumorigenic process in obese individuals might lead to more effective treatments and preventive measures.


Asunto(s)
Adrenérgicos , Neoplasias , Tejido Adiposo , Matriz Extracelular , Humanos , Neoplasias/epidemiología , Obesidad/complicaciones
13.
Biochem Biophys Res Commun ; 618: 46-53, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35714570

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH) and liver fibrosis emerge as progressive liver diseases that accompany metabolic syndrome usually characterized by obesity, insulin resistance and type 2 diabetes. Currently no FDA approved treatments exist for the treatment of NASH and liver fibrosis, which requires a better knowledge of the underlying molecular mechanisms. TSC22D4 belongs to the TSC-22 protein family, the members of which are regulated by inflammatory and stress signals. Interestingly, patients with type 2 diabetes, with NAFLD as well as with NASH all have elevated levels of hepatic TSC22D4 expression. Previous studies with targeted deletion of TSC22D4 specifically in hepatocytes showed that TSC22D4 not only acts as a critical controller of diabetic hyperglycemia, but also contributes to NAFLD/NASH progression. To gain better insight into the development of progressive liver diseases, here we studied the function of TSC22D4 in hepatic stellate cells (HSCs), which play a key role in the pathogenesis of liver fibrosis. Our results indicated that TSC22D4 contributes to TGFß1-mediated activation of HSCs and promotes their proliferation and migration. RNA-Sequencing analysis revealed that TSC22D4 initiates transcriptional events associated with HSC activation. Overall, our findings establish TSC22D4 as a key hub in the development of liver fibrosis, acting across different cellular compartments. Combinatorial TSC22D4 targeting in both hepatocytes and HSC may thus show superior efficacy against progressive liver disease.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Factores de Transcripción , Factor de Crecimiento Transformador beta1 , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
14.
FASEB J ; 35 Suppl 12021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34318951

RESUMEN

Withdrawal: Valeria Lopez Salazar, Rhoda Anane Karikari, Lun Li, Rabih El-Merahbi, Maria Troullinaki, Moya Wu, Tobias Wiedemann, Alina Walth, Manuel Gil Lozano, Maria Rohm, Stephan Herzig, Anastasia Georgiadi. Adipocyte Deletion of ADAM17 Leads to Insulin Resistance in Association with Age and HFD in Mice (2021). The FASEB Journal. 35:s1. doi: 10.1096/fasebj.2021.35.S1.00447. The above abstract, published online on May 14, 2021 in Wiley Online Library (wileyonlinelibrary.com), has been withdrawn by agreement between the authors, FASEB, and Wiley Periodicals Inc. The withdrawal is due to a request made by the authors prior to publication. The Publisher apologizes that this abstract was published in error.

15.
Adv Exp Med Biol ; 1390: 61-82, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36107313

RESUMEN

Nuclear receptors are master regulators of energy metabolism through the conversion of extracellular signals into gene expression signatures. The function of the respective nuclear receptor is tissue specific, signal and co-factor dependent. While normal nuclear receptor function is central to metabolic physiology, aberrant nuclear receptor signaling is linked to various metabolic diseases such as type 2 diabetes mellitus, obesity, or hepatic steatosis. Thus, the tissue specific manipulation of nuclear receptors is a major field in biomedical research and represents a treatment approach for metabolic syndrome. This chapter focuses on key nuclear receptors involved in regulating the metabolic function of liver, adipose tissue, skeletal muscle, and pancreatic ß-cells. It also addresses the importance of nuclear co-factors for fine-tuning of nuclear receptor function. The mode of action, role in energy metabolism, and therapeutic potential of prominent nuclear receptors is outlined.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Metabólicas , Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Humanos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
16.
Diabetologia ; 64(12): 2843-2855, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34480211

RESUMEN

AIMS/HYPOTHESIS: The individual risk of progression of diabetic peripheral neuropathy is difficult to predict for each individual. Mutations in proteins that are responsible for the process of myelination are known to cause neurodegeneration and display alteration in experimental models of diabetic neuropathy. In a prospective observational human pilot study, we investigated myelin-specific circulating mRNA targets, which have been identified in vitro, for their capacity in the diagnosis and prediction of diabetic neuropathy. The most promising candidate was tested against the recently established biomarker of neural damage, neurofilament light chain protein. METHODS: Schwann cells were cultured under high-glucose conditions and mRNAs of various myelin-specific genes were screened intra- and extracellularly. Ninety-two participants with type 2 diabetes and 30 control participants were enrolled and evaluated for peripheral neuropathy using neuropathy deficit scores, neuropathy symptom scores and nerve conduction studies as well as quantitative sensory testing at baseline and after 12/24 months of a follow-up period. Magnetic resonance neurography of the sciatic nerve was performed in 37 individuals. Neurofilament light chain protein and four myelin-specific mRNA transcripts derived from in vitro screenings were measured in the serum of all participants. The results were tested for associations with specific neuropathic deficits, fractional anisotropy and the progression of neuropathic deficits at baseline and after 12 and 24 months. RESULTS: In neuronal Schwann cells and human nerve sections, myelin protein zero was identified as the strongest candidate for a biomarker study. Circulating mRNA of myelin protein zero was decreased significantly in participants with diabetic neuropathy (p < 0.001), whereas neurofilament light chain protein showed increased levels in participants with diabetic neuropathy (p < 0.05). Both variables were linked to altered electrophysiology, fractional anisotropy and quantitative sensory testing. In a receiver-operating characteristic curve analysis myelin protein zero improved the diagnostic performance significantly in combination with a standard model (diabetes duration, age, BMI, HbA1c) from an AUC of 0.681 to 0.836 for the detection of diabetic peripheral neuropathy. A follow-up study revealed that increased neurofilament light chain was associated with the development of a hyperalgesic phenotype (p < 0.05), whereas decreased myelin protein zero predicted hypoalgesia (p < 0.001) and progressive loss of nerve function 24 months in advance (HR of 6.519). CONCLUSIONS/INTERPRETATION: This study introduces a dynamic and non-invasive assessment strategy for the underlying pathogenesis of diabetic peripheral neuropathy. The diagnosis of axonal degeneration, associated with hyperalgesia, and demyelination, linked to hypoalgesia, could benefit from the usage of neurofilament light chain protein and circulating mRNA of myelin protein zero as potential biomarkers.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Biomarcadores , Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas/patología , Estudios de Seguimiento , Humanos , Hiperalgesia/complicaciones , Neuronas/metabolismo , Proyectos Piloto
17.
Diabetologia ; 64(8): 1850-1865, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34014371

RESUMEN

AIMS/HYPOTHESIS: Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart and neural crest derivatives-expressed 2 (HAND2) in adipogenesis. METHODS: Human white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individuals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing (RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre) and performed a large panel of metabolic tests. RESULTS: We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was correlated to BMI. The HAND2 gene was enriched in white adipocytes compared with brown, induced early in differentiation and responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters indirectly regulated by the GR-HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at stages prior to Adipoq expression. CONCLUSIONS/INTERPRETATION: In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in humans and mice. DATA AVAILABILITY: Array data have been submitted to the GEO database at NCBI (GSE148699).


Asunto(s)
Adipocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica/fisiología , Glucocorticoides/farmacología , Obesidad/genética , Factores de Transcripción/genética , Adipogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Adulto , Anciano , Animales , Estudios Transversales , Femenino , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Adulto Joven
18.
EMBO J ; 36(14): 1999-2017, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28623240

RESUMEN

Adipose tissue represents a critical component in healthy energy homeostasis. It fulfills important roles in whole-body lipid handling, serves as the body's major energy storage compartment and insulation barrier, and secretes numerous endocrine mediators such as adipokines or lipokines. As a consequence, dysfunction of these processes in adipose tissue compartments is tightly linked to severe metabolic disorders, including obesity, metabolic syndrome, lipodystrophy, and cachexia. While numerous studies have addressed causes and consequences of obesity-related adipose tissue hypertrophy and hyperplasia for health, critical pathways and mechanisms in (involuntary) adipose tissue loss as well as its systemic metabolic consequences are far less understood. In this review, we discuss the current understanding of conditions of adipose tissue wasting and review microenvironmental determinants of adipocyte (dys)function in related pathophysiologies.


Asunto(s)
Tejido Adiposo/patología , Metabolismo Energético , Metabolismo de los Lípidos , Adipoquinas , Animales , Atrofia/patología , Atrofia/fisiopatología , Homeostasis , Humanos , Obesidad/patología , Obesidad/fisiopatología
19.
EMBO Rep ; 20(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30890538

RESUMEN

Cachexia is a wasting disorder that accompanies many chronic diseases including cancer and results from an imbalance of energy requirements and energy uptake. In cancer cachexia, tumor-secreted factors and/or tumor-host interactions cause this imbalance, leading to loss of adipose tissue and skeletal and cardiac muscle, which weakens the body. In this review, we discuss how energy enters the body and is utilized by the different organs, including the gut, liver, adipose tissue, and muscle, and how these organs contribute to the energy wasting observed in cachexia. We also discuss futile cycles both between the organs and within the cells, which are often used to fine-tune energy supply under physiologic conditions. Ultimately, understanding the complex interplay of pathologic energy-wasting circuits in cachexia can bring us closer to identifying effective treatment strategies for this devastating wasting disease.


Asunto(s)
Caquexia/metabolismo , Metabolismo Energético , Tejido Adiposo/metabolismo , Animales , Caquexia/etiología , Absorción Gastrointestinal , Humanos , Hígado/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Neoplasias/metabolismo , Especificidad de Órganos
20.
EMBO Rep ; 20(11): e48552, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31559673

RESUMEN

Aberrant activity of the glucocorticoid (GC)/glucocorticoid receptor (GR) endocrine system has been linked to obesity-related metabolic dysfunction. Traditionally, the GC/GR axis has been believed to play a crucial role in adipose tissue formation and function in both, white (WAT) and brown adipose tissue (BAT). While recent studies have challenged this notion for WAT, the contribution of GC/GR signaling to BAT-dependent energy homeostasis remained unknown. Here, we have generated and characterized a BAT-specific GR-knockout mouse (GRBATKO ), for the first time allowing to genetically interrogate the metabolic impact of BAT-GR. The HPA axis in GRBATKO mice was intact, as was the ability of mice to adapt to cold. BAT-GR was dispensable for the adaptation to fasting-feeding cycles and the development of diet-induced obesity. In obesity, glucose and lipid metabolism, insulin sensitivity, and food intake remained unchanged, aligning with the absence of changes in thermogenic gene expression. Together, we demonstrate that the GR in UCP1-positive BAT adipocytes plays a negligible role in systemic metabolism and BAT function, thereby opposing a long-standing paradigm in the field.


Asunto(s)
Adipocitos Marrones/metabolismo , Metabolismo Energético , Homeostasis , Receptores de Glucocorticoides/metabolismo , Animales , Peso Corporal , Respuesta al Choque por Frío , Ayuno , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA