Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 24(61): 16395-16406, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30117602

RESUMEN

The design of a biomimetic and fully base metal photocatalytic system for photocatalytic proton reduction in a homogeneous medium is described. A synthetic pyridylphosphole-appended [FeFe] hydrogenase mimic was encapsulated inside a supramolecular zinc porphyrin-based metal-organic cage structure Fe4 (Zn-L)6 . The binding is driven by the selective pyridine-zinc porphyrin interaction and results in the catalyst being bound strongly inside the hydrophobic cavity of the cage. Excitation of the capsule-forming porphyrin ligands with visible light while probing the IR spectrum confirmed that electron transfer takes place from the excited porphyrin cage to the catalyst residing inside the capsule. Light-driven proton reduction was achieved by irradiation of an acidic solution of the caged catalyst with visible light.

2.
Angew Chem Int Ed Engl ; 57(35): 11247-11251, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29975448

RESUMEN

Oxygen formation through water oxidation catalysis is a key reaction in the context of fuel generation from renewable energies. The number of homogeneous catalysts that catalyze water oxidation at high rate with low overpotential is limited. Ruthenium complexes can be particularly active, especially if they facilitate a dinuclear pathway for oxygen bond formation step. A supramolecular encapsulation strategy is reported that involves preorganization of dilute solutions (10-5 m) of ruthenium complexes to yield high local catalyst concentrations (up to 0.54 m). The preorganization strategy enhances the water oxidation rate by two-orders of magnitude to 125 s-1 , as it facilitates the diffusion-controlled rate-limiting dinuclear coupling step. Moreover, it modulates reaction rates, enabling comprehensive elucidation of electrocatalytic reaction mechanisms.

3.
Chemistry ; 23(65): 16413-16418, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-28836700

RESUMEN

Lowering the overpotential required for water oxidation is of paramount importance for the efficient production of carbon-neutral fuels. This article highlights the intrinsic influence of the water oxidation mechanism used by molecular catalysts on the theoretically achievable minimal overpotential, based on scaling relationships typically used for heterogeneous catalysts. Due to such scaling relationships, catalysts that operate through the water nucleophilic attack mechanism have a fundamental minimal overpotential of about 0.3 V, whereas those that follow the dinuclear radical oxo coupling mechanism should in principle be able to operate with a lower overpotential. Therefore, it is recommended to design catalysts operating through the latter mechanism to achieve very efficient water oxidation systems.

4.
Angew Chem Int Ed Engl ; 53(49): 13380-4, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25219625

RESUMEN

Homogeneous transition-metal catalysis is a crucial technology for the sustainable preparation of valuable chemicals. The catalyst concentration is usually kept as low as possible, typically at mM or µM levels, and the effect of high catalyst concentration is hardly exploited because of solubility issues and the inherent unfavorable catalyst/substrate ratio. Herein, a self-assembly strategy is reported which leads to local catalyst concentrations ranging from 0.05 M to 1.1 M, inside well-defined nanospheres, whilst the overall catalyst concentration in solution remains at the conventional mM levels. We disclose that only at this high concentration, the gold(I) chloride is reactive and shows high selectivity in intramolecular CO and CC bond-forming cyclization reactions.


Asunto(s)
Oro/química , Nanosferas/química , Catálisis , Modelos Moleculares , Nanotecnología , Elementos de Transición/química
5.
ChemSusChem ; 14(1): 234-250, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-32991076

RESUMEN

Strategies that enable the renewable production of storable fuels (i. e. hydrogen or hydrocarbons) through electrocatalysis continue to generate interest in the scientific community. Of central importance to this pursuit is obtaining the requisite chemical (H+ ) and electronic (e- ) inputs for fuel-forming reduction reactions, which can be met sustainably by water oxidation catalysis. Further possibility exists to couple these redox transformations to renewable energy sources (i. e. solar), thus creating a carbon neutral solution for long-term energy storage. Nature uses a Mn-Ca cluster for water oxidation catalysis via multiple proton-coupled electron-transfers (PCETs) with a photogenerated bias to perform this process with TOF 100∼300 s-1 . Synthetic molecular catalysts that efficiently perform this conversion commonly utilize rare metals (e. g., Ru, Ir), whose low abundance are associated to higher costs and scalability limitations. Inspired by nature's use of 1st row transition metal (TM) complexes for water oxidation catalysts (WOCs), attempts to use these abundant metals have been intensively explored but met with limited success. The smaller atomic size of 1st row TM ions lowers its ability to accommodate the oxidative equivalents required in the 4e- /4H+ water oxidation catalysis process, unlike noble metal catalysts that perform single-site electrocatalysis at lower overpotentials (η). Overcoming the limitations of 1st row TMs requires developing molecular catalysts that exploit biomimetic phenomena - multiple-metal redox-cooperativity, PCET and second-sphere interactions - to lower the overpotential, preorganize substrates and maintain stability. Thus, the ultimate goal of developing efficient, robust and scalable WOCs remains a challenge. This Review provides a summary of previous research works highlighting 1st row TM-based homogeneous WOCs, catalytic mechanisms, followed by strategies for catalytic activity improvements, before closing with a future outlook for this field.

6.
Chem Sci ; 12(1): 50-70, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34168739

RESUMEN

Artificial photosynthesis is a major scientific endeavor aimed at converting solar power into a chemical fuel as a viable approach to sustainable energy production and storage. Photosynthesis requires three fundamental actions performed in order; light harvesting, charge-separation and redox catalysis. These actions span different timescales and require the integration of functional architectures developed in different fields of study. The development of artificial photosynthetic devices is therefore inherently complex and requires an interdisciplinary approach. Supramolecular chemistry has evolved to a mature scientific field in which programmed molecular components form larger functional structures by self-assembly processes. Supramolecular chemistry could provide important tools in preparing, integrating and optimizing artificial photosynthetic devices as it allows precise control over molecular components within such a device. This is illustrated in this perspective by discussing state-of-the-art devices and the current limiting factors - such as recombination and low stability of reactive intermediates - and providing exemplary supramolecular approaches to alleviate some of those problems. Inspiring supramolecular solutions such as those discussed herein will incite expansion of the supramolecular toolbox, which eventually may be needed for the development of applied artificial photosynthesis.

7.
ChemSusChem ; 13(21): 5625-5631, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-32959962

RESUMEN

The production of hydrogen by water electrolysis benefits from the development of water oxidation catalysts. This development process can be aided by the postulation of design rules for catalytic systems. The analysis of the reactivity of molecular complexes can be complicated by their decomposition under catalytic conditions into nanoparticles that may also be active. Such a misinterpretation can lead to incorrect design rules. In this study, the nickel-based water oxidation catalyst [NiII (meso-L)](ClO4 )2 , which was previously thought to operate as a molecular catalyst, is found to decompose to form a NiOx layer in a pH 7.0 phosphate buffer under prolonged catalytic conditions, as indicated by controlled potential electrolysis, electrochemical quartz crystal microbalance, and X-ray photoelectron spectroscopy measurements. Interestingly, the formed NiOx layer desorbs from the surface of the electrode under less anodic potentials. Therefore, no nickel species can be detected on the electrode after electrolysis. Catalyst decomposition is strongly dependent on the pH and buffer, as there is no indication of NiOx layer formation at pH 6.5 in phosphate buffer nor in a pH 7.0 acetate buffer. Under these conditions, the activity stems from a molecular species, but currents are much lower. This study demonstrates the importance of in situ characterization methods for catalyst decomposition and metal oxide layer formation, and previously proposed design elements for nickel-based catalysts need to be revised.

8.
ChemSusChem ; 13(24): 6629-6634, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33090703

RESUMEN

The development of novel water oxidation catalysts is important in the context of renewable fuels production. Ligand design is one of the key tools to improve the activity and stability of molecular catalysts. The establishment of ligand design rules can facilitate the development of improved molecular catalysts. In this paper it is shown that chemical oxidants can be used to probe oxygen evolution activity for nickel-based systems, and trends are reported that can improve future ligand design. Interestingly, different ligand effects were observed in comparison to other first-row transition metal complexes. For example, nickel complexes with secondary amine donors were more active than with tertiary amine donors, which is the opposite for iron complexes. The incorporation of imine donor groups in a cyclam ligand resulted in the fastest and most durable nickel catalyst of our series, achieving oxygen evolution turnover numbers up to 380 and turnover frequencies up to 68 min-1 in a pH 5.0 acetate buffer using Oxone as oxidant. Initial kinetic experiments with this catalyst revealed a first order in chemical oxidant and a half order in catalyst. This implies a rate-determining oxidation step from a dimeric species that needs to break up to generate the active catalyst. These findings lay the foundation for the rational design of molecular nickel catalysts for water oxidation and highlight that catalyst design rules are not generally applicable for different metals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA