Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(24): 13562-13570, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482863

RESUMEN

Various pregnancy complications, such as severe forms of preeclampsia or intrauterine growth restriction, are thought to arise from failures in the differentiation of human placental trophoblasts. Progenitors of the latter either develop into invasive extravillous trophoblasts, remodeling the uterine vasculature, or fuse into multinuclear syncytiotrophoblasts transporting oxygen and nutrients to the growing fetus. However, key regulatory factors controlling trophoblast self-renewal and differentiation have been poorly elucidated. Using primary cells, three-dimensional organoids, and CRISPR-Cas9 genome-edited JEG-3 clones, we herein show that YAP, the transcriptional coactivator of the Hippo signaling pathway, promotes maintenance of cytotrophoblast progenitors by different genomic mechanisms. Genetic or chemical manipulation of YAP in these cellular models revealed that it stimulates proliferation and expression of cell cycle regulators and stemness-associated genes, but inhibits cell fusion and production of syncytiotrophoblast (STB)-specific proteins, such as hCG and GDF15. Genome-wide comparisons of primary villous cytotrophoblasts overexpressing constitutively active YAP-5SA with YAP KO cells and syncytializing trophoblasts revealed common target genes involved in trophoblast stemness and differentiation. ChIP-qPCR unraveled that YAP-5SA overexpression increased binding of YAP-TEAD4 complexes to promoters of proliferation-associated genes such as CCNA and CDK6 Moreover, repressive YAP-TEAD4 complexes containing the histone methyltransferase EZH2 were detected in the genomic regions of the STB-specific CGB5 and CGB7 genes. In summary, YAP plays a pivotal role in the maintenance of the human placental trophoblast epithelium. Besides activating stemness factors, it also directly represses genes promoting trophoblast cell fusion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Placentación , Factores de Transcripción/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Diferenciación Celular , Proliferación Celular , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Placenta/metabolismo , Embarazo , Unión Proteica , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
2.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796700

RESUMEN

Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein subfamily, is predominantly expressed in the brain and placenta in humans. Recently, we unveiled that ZNF554 regulates trophoblast invasion during placentation and its decreased expression leads to the early pathogenesis of preeclampsia. Since ZNF proteins are immensely implicated in the development of several tumors including malignant tumors of the brain, here we explored the pathological role of ZNF554 in gliomas. We examined the expression of ZNF554 at mRNA and protein levels in normal brain and gliomas, and then we searched for genome-wide transcriptomic changes in U87 glioblastoma cells transiently overexpressing ZNF554. Immunohistochemistry of brain tissues in our cohort (n = 62) and analysis of large TCGA RNA-Seq data (n = 687) of control, oligodendroglioma, and astrocytoma tissues both revealed decreased expression of ZNF554 towards higher glioma grades. Furthermore, low ZNF554 expression was associated with shorter survival of grade III and IV astrocytoma patients. Overexpression of ZNF554 in U87 cells resulted in differential expression, mostly downregulation of 899 genes. The "PI3K-Akt signaling pathway", known to be activated during glioma development, was the most impacted among 116 dysregulated pathways. Most affected pathways were cancer-related and/or immune-related. Congruently, cell proliferation was decreased and cell cycle was arrested in ZNF554-transfected glioma cells. These data collectively suggest that ZNF554 is a potential tumor suppressor and its decreased expression may lead to the loss of oncogene suppression, activation of tumor pathways, and shorter survival of patients with malignant glioma.


Asunto(s)
Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Factores de Transcripción de Tipo Kruppel/genética , Transducción de Señal , Adolescente , Adulto , Anciano , Neoplasias Encefálicas/patología , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Genoma Humano , Glioma/patología , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia , Adulto Joven
3.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658584

RESUMEN

Gene expression studies of molar pregnancy have been limited to a small number of candidate loci. We analyzed high-dimensional RNA and protein data to characterize molecular features of complete hydatidiform moles (CHMs) and corresponding pathologic pathways. CHMs and first trimester placentas were collected, histopathologically examined, then flash-frozen or paraffin-embedded. Frozen CHMs and control placentas were subjected to RNA-Seq, with resulting data and published placental RNA-Seq data subjected to bioinformatics analyses. Paraffin-embedded tissues from CHMs and control placentas were used for tissue microarray (TMA) construction, immunohistochemistry, and immunoscoring for galectin-14. Of the 14,022 protein-coding genes expressed in all samples, 3,729 were differentially expressed (DE) in CHMs, of which 72% were up-regulated. DE genes were enriched in placenta-specific genes (OR = 1.88, p = 0.0001), of which 79% were down-regulated, imprinted genes (OR = 2.38, p = 1.54 × 10-6), and immune genes (OR = 1.82, p = 7.34 × 10-18), of which 73% were up-regulated. DNA methylation-related enzymes and histone demethylases were dysregulated. "Cytokine-cytokine receptor interaction" was the most impacted of 38 dysregulated pathways, among which 17 were immune-related pathways. TMA-based immunoscoring validated the lower expression of galectin-14 in CHM. In conclusion, placental functions were down-regulated, imprinted gene expression was altered, and immune pathways were activated, indicating complex dysregulation of placental developmental and immune processes in CHMs.


Asunto(s)
Mola Hidatiforme/genética , Mola Hidatiforme/inmunología , Placenta/metabolismo , Embarazo/inmunología , Coriocarcinoma , Citocinas , Metilación de ADN , Regulación hacia Abajo , Femenino , Expresión Génica , Enfermedad Trofoblástica Gestacional , Humanos , Inmunohistoquímica , Primer Trimestre del Embarazo , Biología de Sistemas , Regulación hacia Arriba
4.
Biochem Biophys Res Commun ; 490(3): 868-875, 2017 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-28647357

RESUMEN

Lysine 27 to methionine (K27 M) mutation of the histone variant H3.3 drives the formation of an aggressive glioblastoma multiforme tumor in infants. Here we analyzed how the methionine substitution alters the stability of H3.3 nucleosomes in vitro and modifies its kinetic properties in live cells. We also determined whether the presence of mutant nucleosomes perturbed the mobility of the PRC2 subunit Ezh2 (enhancer-of-zeste homolog 2). We found that K27 M nucleosomes maintained the wild-type molecular architecture both at the level of bulk histones and single nucleosomes and followed similar diffusion kinetics to wild-type histones in live cells. Nevertheless, we observed a remarkable differential recovery of Ezh2 in response to transcriptional stress that was accompanied by a faster diffusion rate of the mobile fraction of Ezh2 and a significantly increased immobile fraction, suggesting tighter chromatin binding of Ezh2 upon transcription inhibition. The differential recovery of Ezh2 was dependent on transcription, however, it was independent from K27 M mutation status. These biophysical characteristics shed more light on the mechanism of histone H3.3 K27M in glioma genesis in relation to the kinetic properties of Ezh2.


Asunto(s)
Histonas/genética , Mutación Puntual , Animales , Proteína Potenciadora del Homólogo Zeste 2/análisis , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Glioblastoma/genética , Glioblastoma/metabolismo , Células HeLa , Histonas/análisis , Histonas/metabolismo , Humanos , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Activación Transcripcional , Xenopus laevis
5.
NPJ Syst Biol Appl ; 10(1): 68, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906870

RESUMEN

Combination therapy is well established as a key intervention strategy for cancer treatment, with the potential to overcome monotherapy resistance and deliver a more durable efficacy. However, given the scale of unexplored potential target space and the resulting combinatorial explosion, identifying efficacious drug combinations is a critical unmet need that is still evolving. In this paper, we demonstrate a network biology-driven, simulation-based solution, the Simulated Cell™. Integration of omics data with a curated signaling network enables the accurate and interpretable prediction of 66,348 combination-cell line pairs obtained from a large-scale combinatorial drug sensitivity screen of 684 combinations across 97 cancer cell lines (BAC = 0.62, AUC = 0.7). We highlight drug combination pairs that interact with DNA Damage Response pathways and are predicted to be synergistic, and deep network insight to identify biomarkers driving combination synergy. We demonstrate that the cancer cell 'avatars' capture the biological complexity of their in vitro counterparts, enabling the identification of pathway-level mechanisms of combination benefit to guide clinical translatability.


Asunto(s)
Daño del ADN , Neoplasias , Humanos , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Simulación por Computador , Daño del ADN/efectos de los fármacos , Descubrimiento de Drogas/métodos , Sinergismo Farmacológico , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Biología de Sistemas/métodos
6.
Nat Commun ; 13(1): 5058, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030240

RESUMEN

Arabidopsis NODULIN HOMEOBOX (NDX) is a nuclear protein described as a regulator of specific euchromatic genes within transcriptionally active chromosome arms. Here we show that NDX is primarily a heterochromatin regulator that functions in pericentromeric regions to control siRNA production and non-CG methylation. Most NDX binding sites coincide with pericentromeric het-siRNA loci that mediate transposon silencing, and are antagonistic with R-loop structures that are prevalent in euchromatic chromosomal arms. Inactivation of NDX leads to differential siRNA accumulation and DNA methylation, of which CHH/CHG hypomethylation colocalizes with NDX binding sites. Hi-C analysis shows significant chromatin structural changes in the ndx mutant, with decreased intrachromosomal interactions at pericentromeres where NDX is enriched in wild-type plants, and increased interchromosomal contacts between KNOT-forming regions, similar to those observed in DNA methylation mutants. We conclude that NDX is a key regulator of heterochromatin that is functionally coupled to het-siRNA loci and non-CG DNA methylation pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Genes Homeobox , Heterocromatina , Proteínas de Homeodominio , Homeostasis , Proteínas de la Membrana , Proteínas de Plantas , ARN Interferente Pequeño
7.
Biomedicines ; 9(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34944751

RESUMEN

Gestational trophoblastic diseases (GTDs) have not been investigated for their epigenetic marks and consequent transcriptomic changes. Here, we analyzed genome-wide DNA methylation and transcriptome data to reveal the epigenetic basis of disease pathways that may lead to benign or malignant GTDs. RNA-Seq, mRNA microarray, and Human Methylation 450 BeadChip data from complete moles and choriocarcinoma cells were bioinformatically analyzed. Paraffin-embedded tissues from complete moles and control placentas were used for tissue microarray construction, DNMT3B immunostaining and immunoscoring. We found that DNA methylation increases with disease severity in GTDs. Differentially expressed genes are mainly upregulated in moles while predominantly downregulated in choriocarcinoma. DNA methylation principally influences the gene expression of villous trophoblast differentiation-related or predominantly placenta-expressed genes in moles and choriocarcinoma cells. Affected genes in these subsets shared focal adhesion and actin cytoskeleton pathways in moles and choriocarcinoma. In moles, cell cycle and differentiation regulatory pathways, essential for trophoblast/placental development, were enriched. In choriocarcinoma cells, hormone biosynthetic, extracellular matrix-related, hypoxic gene regulatory, and differentiation-related signaling pathways were enriched. In moles, we found slight upregulation of DNMT3B protein, a developmentally important de novo DNA methylase, which is strongly overexpressed in choriocarcinoma cells that may partly be responsible for the large DNA methylation differences. Our findings provide new insights into the shared and disparate molecular pathways of disease in GTDs and may help in designing new diagnostic and therapeutic tools.

8.
Sci Rep ; 9(1): 4, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626909

RESUMEN

The complex effects of estradiol on non-reproductive tissues/cells, including lymphoid tissues and immunocytes, have increasingly been explored. However, the role of sex hormone binding globulin (SHBG) in the regulation of these genomic and non-genomic actions of estradiol is controversial. Moreover, the expression of SHBG and its internalization by potential receptors, as well as the influence of SHBG on estradiol uptake and signaling in lymphocytes has remained unexplored. Here, we found that human and mouse T cells expressed SHBG intrinsically. In addition, B lymphoid cell lines as well as both primary B and T lymphocytes bound and internalized external SHBG, and the amount of plasma membrane-bound SHBG decreased in B cells of pregnant compared to non-pregnant women. As potential mediators of this process, SHBG receptor candidates expressed by lymphocytes were identified in silico, including estrogen receptor (ER) alpha. Furthermore, cell surface-bound SHBG was detected in close proximity to membrane ERs while highly colocalizing with lipid rafts. The SHBG-membrane ER interaction was found functional since SHBG promoted estradiol uptake by lymphocytes and subsequently influenced Erk1/2 phosphorylation. In conclusion, the SHBG-SHBG receptor-membrane ER complex participates in the rapid estradiol signaling in lymphocytes, and this pathway may be altered in B cells in pregnant women.


Asunto(s)
Linfocitos B/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Globulina de Unión a Hormona Sexual/fisiología , Linfocitos T/metabolismo , Animales , Linfocitos B/citología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Embarazo , Linfocitos T/citología
10.
J Cell Biol ; 217(10): 3398-3415, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30037925

RESUMEN

Spp1 is the H3K4me3 reader subunit of the Set1 complex (COMPASS/Set1C) that contributes to the mechanism by which meiotic DNA break sites are mechanistically selected. We previously proposed a model in which Spp1 interacts with H3K4me3 and the chromosome axis protein Mer2 that leads to DSB formation. Here we show that spatial interactions of Spp1 and Mer2 occur independently of Set1C. Spp1 exhibits dynamic chromatin binding features during meiosis, with many de novo appearing and disappearing binding sites. Spp1 chromatin binding dynamics depends on its PHD finger and Mer2-interacting domain and on modifiable histone residues (H3R2/K4). Remarkably, association of Spp1 with Mer2 axial sites reduces the effective turnover rate and diffusion coefficient of Spp1 upon chromatin binding, compared with other Set1C subunits. Our results indicate that "chromosomal turnover rate" is a major molecular determinant of Spp1 function in the framework of meiotic chromatin structure that prepares recombination initiation sites for break formation.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Roturas del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/fisiología , Meiosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromosomas Fúngicos/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA