Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Infect Dis ; 211(6): 889-97, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25057042

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) infection is associated with a high case-fatality rate, and the potential pandemic spread of the virus is a public health concern. The spike protein of MERS-CoV (MERS-S) facilitates viral entry into host cells, which depends on activation of MERS-S by cellular proteases. Proteolytic activation of MERS-S during viral uptake into target cells has been demonstrated. However, it is unclear whether MERS-S is also cleaved during S protein synthesis in infected cells and whether cleavage is required for MERS-CoV infectivity. Here, we show that MERS-S is processed by proprotein convertases in MERS-S-transfected and MERS-CoV-infected cells and that several RXXR motifs located at the border between the surface and transmembrane subunit of MERS-S are required for efficient proteolysis. However, blockade of proprotein convertases did not impact MERS-S-dependent transduction of target cells expressing high amounts of the viral receptor, DPP4, and did not modulate MERS-CoV infectivity. These results show that MERS-S is a substrate for proprotein convertases and demonstrate that processing by these enzymes is dispensable for S protein activation. Efforts to inhibit MERS-CoV infection by targeting host cell proteases should therefore focus on enzymes that process MERS-S during viral uptake into target cells.


Asunto(s)
Coronavirus/fisiología , Proproteína Convertasas/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Datos de Secuencia Molecular , Inhibidores de Proteasas/farmacología , Procesamiento Proteico-Postraduccional , Proteolisis , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus
2.
J Virol ; 88(2): 1293-307, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24227843

RESUMEN

The type II transmembrane serine proteases TMPRSS2 and HAT can cleave and activate the spike protein (S) of the severe acute respiratory syndrome coronavirus (SARS-CoV) for membrane fusion. In addition, these proteases cleave the viral receptor, the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), and it was proposed that ACE2 cleavage augments viral infectivity. However, no mechanistic insights into this process were obtained and the relevance of ACE2 cleavage for SARS-CoV S protein (SARS-S) activation has not been determined. Here, we show that arginine and lysine residues within ACE2 amino acids 697 to 716 are essential for cleavage by TMPRSS2 and HAT and that ACE2 processing is required for augmentation of SARS-S-driven entry by these proteases. In contrast, ACE2 cleavage was dispensable for activation of the viral S protein. Expression of TMPRSS2 increased cellular uptake of soluble SARS-S, suggesting that protease-dependent augmentation of viral entry might be due to increased uptake of virions into target cells. Finally, TMPRSS2 was found to compete with the metalloprotease ADAM17 for ACE2 processing, but only cleavage by TMPRSS2 resulted in augmented SARS-S-driven entry. Collectively, our results in conjunction with those of previous studies indicate that TMPRSS2 and potentially related proteases promote SARS-CoV entry by two separate mechanisms: ACE2 cleavage, which might promote viral uptake, and SARS-S cleavage, which activates the S protein for membrane fusion. These observations have interesting implications for the development of novel therapeutics. In addition, they should spur efforts to determine whether receptor cleavage promotes entry of other coronaviruses, which use peptidases as entry receptors.


Asunto(s)
Proteínas ADAM/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Serina Endopeptidasas/metabolismo , Síndrome Respiratorio Agudo Grave/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Proteínas ADAM/genética , Proteína ADAM17 , Secuencias de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Línea Celular , Humanos , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Procesamiento Proteico-Postraduccional , Proteolisis , Receptores Virales/genética , Receptores Virales/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Serina Endopeptidasas/genética , Síndrome Respiratorio Agudo Grave/genética , Síndrome Respiratorio Agudo Grave/metabolismo , Síndrome Respiratorio Agudo Grave/virología , Glicoproteína de la Espiga del Coronavirus/genética
3.
J Virol ; 87(11): 6150-60, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23536651

RESUMEN

Infection with human coronavirus 229E (HCoV-229E) is associated with the common cold and may result in pneumonia in immunocompromised patients. The viral spike (S) protein is incorporated into the viral envelope and mediates infectious entry of HCoV-229E into host cells, a process that depends on the activation of the S-protein by host cell proteases. However, the proteases responsible for HCoV-229E activation are incompletely defined. Here we show that the type II transmembrane serine proteases TMPRSS2 and HAT cleave the HCoV-229E S-protein (229E-S) and augment 229E-S-driven cell-cell fusion, suggesting that TMPRSS2 and HAT can activate 229E-S. Indeed, engineered expression of TMPRSS2 and HAT rendered 229E-S-driven virus-cell fusion insensitive to an inhibitor of cathepsin L, a protease previously shown to facilitate HCoV-229E infection. Inhibition of endogenous cathepsin L or TMPRSS2 demonstrated that both proteases can activate 229E-S for entry into cells that are naturally susceptible to infection. In addition, evidence was obtained that activation by TMPRSS2 rescues 229E-S-dependent cell entry from inhibition by IFITM proteins. Finally, immunohistochemistry revealed that TMPRSS2 is coexpressed with CD13, the HCoV-229E receptor, in human airway epithelial (HAE) cells, and that CD13(+) TMPRSS2(+) cells are preferentially targeted by HCoV-229E, suggesting that TMPRSS2 can activate HCoV-229E in infected humans. In sum, our results indicate that HCoV-229E can employ redundant proteolytic pathways to ensure its activation in host cells. In addition, our observations and previous work suggest that diverse human respiratory viruses are activated by TMPRSS2, which may constitute a target for antiviral intervention.


Asunto(s)
Catepsinas/metabolismo , Coronavirus Humano 229E/fisiología , Infecciones por Coronavirus/enzimología , Mucosa Respiratoria/enzimología , Serina Endopeptidasas/metabolismo , Internalización del Virus , Catepsinas/genética , Línea Celular , Coronavirus Humano 229E/genética , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/virología , Expresión Génica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Mucosa Respiratoria/virología , Serina Endopeptidasas/genética
4.
J Virol ; 87(10): 5502-11, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23468491

RESUMEN

The novel human coronavirus EMC (hCoV-EMC), which recently emerged in Saudi Arabia, is highly pathogenic and could pose a significant threat to public health. The elucidation of hCoV-EMC interactions with host cells is critical to our understanding of the pathogenesis of this virus and to the identification of targets for antiviral intervention. Here we investigated the viral and cellular determinants governing hCoV-EMC entry into host cells. We found that the spike protein of hCoV-EMC (EMC-S) is incorporated into lentiviral particles and mediates transduction of human cell lines derived from different organs, including the lungs, kidneys, and colon, as well as primary human macrophages. Expression of the known coronavirus receptors ACE2, CD13, and CEACAM1 did not facilitate EMC-S-driven transduction, suggesting that hCoV-EMC uses a novel receptor for entry. Directed protease expression and inhibition analyses revealed that TMPRSS2 and endosomal cathepsins activate EMC-S for virus-cell fusion and constitute potential targets for antiviral intervention. Finally, EMC-S-driven transduction was abrogated by serum from an hCoV-EMC-infected patient, indicating that EMC-S-specific neutralizing antibodies can be generated in patients. Collectively, our results indicate that hCoV-EMC uses a novel receptor for protease-activated entry into human cells and might be capable of extrapulmonary spread. In addition, they define TMPRSS2 and cathepsins B and L as potential targets for intervention and suggest that neutralizing antibodies contribute to the control of hCoV-EMC infection.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Coronavirus/fisiología , Interacciones Huésped-Patógeno , Glicoproteínas de Membrana/metabolismo , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Anticuerpos Antivirales/sangre , Catepsinas/metabolismo , Coronavirus/aislamiento & purificación , Coronavirus/patogenicidad , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Humanos , Glicoproteínas de Membrana/inmunología , Receptores de Coronavirus , Arabia Saudita , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus , Transducción Genética , Proteínas del Envoltorio Viral/inmunología , Tropismo Viral
5.
Int J Med Microbiol ; 304(5-6): 542-53, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24751478

RESUMEN

Chlamydia (C.) psittaci, the causative agent of psittacosis in birds and humans, is the most important zoonotic pathogen of the family Chlamydiaceae. During a unique developmental cycle of this obligate intracellular pathogen, the infectious elementary body gains access to the susceptible host cell, where it transforms into the replicative reticulate body. C. psittaci uses dynein motor proteins for optimal early development. Chlamydial proteins that mediate this process are unknown. Two-hybrid screening with the C. psittaci inclusion protein IncB as bait against a HeLa Yeast Two-hybrid (YTH) library revealed that the host protein Snapin interacts with IncB. Snapin is a cytoplasmic protein that plays a multivalent role in intracellular trafficking. Confocal fluorescence microscopy using an IncB-specific antibody demonstrated that IncB, Snapin, and dynein were co-localized near the inclusion of C. psittaci-infected HEp-2 cells. This co-localization was lost when Snapin was depleted by RNAi. The interaction of Snapin with both IncB and dynein has been shown in vitro and in vivo. We propose that Snapin connects chlamydial inclusions with the microtubule network by interacting with both IncB and dynein.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydophila psittaci/fisiología , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Línea Celular , Dineínas/metabolismo , Humanos , Microscopía Confocal , Microscopía Fluorescente , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
Antiviral Res ; 100(3): 605-14, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24121034

RESUMEN

The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.''


Asunto(s)
Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Catepsinas/metabolismo , Enfermedades Transmisibles Emergentes , Infecciones por Coronavirus/virología , Endosomas/metabolismo , Humanos , Pulmón/enzimología , Pulmón/patología , Pulmón/virología , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Peptidil-Dipeptidasa A/metabolismo , Proteolisis , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Síndrome Respiratorio Agudo Grave/patología , Internalización del Virus , Replicación Viral
7.
PLoS One ; 7(4): e35876, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22558251

RESUMEN

The type II transmembrane serine proteases TMPRSS2 and HAT activate influenza viruses and the SARS-coronavirus (TMPRSS2) in cell culture and may play an important role in viral spread and pathogenesis in the infected host. However, it is at present largely unclear to what extent these proteases are expressed in viral target cells in human tissues. Here, we show that both HAT and TMPRSS2 are coexpressed with 2,6-linked sialic acids, the major receptor determinant of human influenza viruses, throughout the human respiratory tract. Similarly, coexpression of ACE2, the SARS-coronavirus receptor, and TMPRSS2 was frequently found in the upper and lower aerodigestive tract, with the exception of the vocal folds, epiglottis and trachea. Finally, activation of influenza virus was conserved between human, avian and porcine TMPRSS2, suggesting that this protease might activate influenza virus in reservoir-, intermediate- and human hosts. In sum, our results show that TMPRSS2 and HAT are expressed by important influenza and SARS-coronavirus target cells and could thus support viral spread in the human host.


Asunto(s)
Reservorios de Enfermedades/veterinaria , Tracto Gastrointestinal/enzimología , Gripe Humana/enzimología , Sistema Respiratorio/enzimología , Serina Endopeptidasas/genética , Síndrome Respiratorio Agudo Grave/enzimología , Enzima Convertidora de Angiotensina 2 , Animales , Aves , Línea Celular , Reservorios de Enfermedades/virología , Activación Enzimática , Tracto Gastrointestinal/virología , Expresión Génica , Humanos , Gripe Humana/genética , Gripe Humana/transmisión , Gripe Humana/virología , Orthomyxoviridae/fisiología , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Sistema Respiratorio/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Serina Endopeptidasas/metabolismo , Síndrome Respiratorio Agudo Grave/genética , Síndrome Respiratorio Agudo Grave/transmisión , Síndrome Respiratorio Agudo Grave/virología , Ácidos Siálicos/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA