RESUMEN
Liposome-based nanoparticles able to release, via a photolytic reaction, a payload anchored at the surface of the phospholipid bilayer were prepared. The liposome formulation strategy uses an original drug-conjugated blue light-sensitive photoactivatable coumarinyl linker. This is based on an efficient blue light-sensitive photolabile protecting group modified by a lipid anchor, which enables its incorporation into liposomes, leading to blue to green light-sensitive nanoparticles. In addition, the formulated liposomes were doped with triplet-triplet annihilation upconverting organic chromophores (red to blue light) in order to prepare red light sensitive liposomes able to release a payload, by upconversion-assisted photolysis. Those light-activatable liposomes were used to demonstrate that direct blue or green light photolysis or red light TTA-UC-assisted drug photolysis can effectively photorelease a drug payload (Melphalan) and kill tumor cells in vitro after photoactivation.
Asunto(s)
Liposomas , Melfalán , Liberación de Fármacos , Fosfolípidos , FotólisisRESUMEN
The aims of this study were to develop topical liposomal hydrogels based on thermal waters (TWs) acquired in the region of Biskra (Northeast Algeria) and also to investigate their rheological properties. Liposomes containing two highly mineralized thermal waters, Baraka (BTW) and Salhine (STW), were prepared by probe sonication using phosphatidylcholine (PC) and cholesterol (Chol), plain or mixed with phosphatidylglycerol (PG). Based on their lipid composition, obtained liposomes presented vesicle sizes of 60 nm, a low polydispersity index, and various negative zeta potentials. It was noted that with increasing counterions charge in TWs the zeta potential of liposomes decreased toward neutral values.Carbopol (1%, w/w) hydrogels prepared with BTW, STW, and also demineralized water (placebo hydrogel) showed a non-Newtonian behavior, pseudoplastic fluid adjusted to Carreau model. The composition of thermal waters influenced highly the rheological properties of Carbopol hydrogels. Liposomal hydrogels were prepared by dispersing liposomes in hydrogels formulated with the same encapsulated thermal water. Regardless of composition or lipid concentration of added liposomes, the viscosity and viscoelastic parameters of Carbopol hydrogels changed negligibly. Indeed, liposome composition and lipid concentration seemed to have no effect on the rheological properties of Carbopol hydrogel in the presence of an important charge of cations. Hence, hydrogels and liposomal hydrogels based on thermal waters had suitable rheological properties for topical application and delivery of minerals in the skin.
Asunto(s)
Hidrogeles , Liposomas , Resinas Acrílicas , Lecitinas , ReologíaRESUMEN
BACKGROUND: Over the last few decades, new synthetic insulin analogues have been developed. Their measurement is of prime importance in the investigation of hypoglycaemia, but their quantification is hampered by variable cross-reactivity with many insulin assays. For clinical analysis, it has now become essential to know the potential cross-reactivity of analogues of interest. METHODS: In this work, we performed an extensive study of insulin analogue cross-reactivity using numerous human insulin immunoassays. We investigated the cross-reactivity of five analogues (lispro, aspart, glulisine, glargine, detemir) and two glargine metabolites (M1 and M2) with 16 commercial human insulin immunoassays as a function of concentration. RESULTS: The cross-reactivity values for insulin analogues or glargine metabolites ranged from 0% to 264%. Four assays were more specific to human insulin, resulting in negligible cross-reactivity with the analogues. However, none of the 16 assays was completely free of cross-reactivity with analogues or metabolites. The results show that analogue cross-reactivity, which varies to a large degree, is far from negligible, and should not be overlooked in clinical investigations. CONCLUSIONS: This study has established the cross-reactivity of five insulin analogues and two glargine metabolites using 16 immunoassays to facilitate the choice of the immunoassay(s) and to provide sensitive and specific analyses in clinical routine or investigation.
Asunto(s)
Artefactos , Inmunoensayo/métodos , Insulina/análogos & derivados , Insulina/análisis , Reacciones Cruzadas , Humanos , Insulina/inmunología , Insulina de Acción Prolongada/inmunología , Insulina de Acción Prolongada/metabolismo , Insulina de Acción Corta/inmunología , Insulina de Acción Corta/metabolismoRESUMEN
The emerging field of photopharmacology is a promising chemobiological methodology for optical control of drug activities that could ultimately solve the off-target toxicity outside the disease location of many drugs for the treatment of a given pathology. The use of photolytic reactions looks very attractive for a light-activated drug release but requires to develop photolytic reactions sensitive to red or near-infrared light excitation for better tissue penetration. This review will present the concepts of triplet-triplet annihilation upconversion-based photolysis and their recent in vivo applications for light-induced drug delivery using photoactivatable nanoparticles.
Asunto(s)
Fotólisis , Humanos , Animales , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , LuzRESUMEN
The physiological problem of chronic inflammation and its associated pathologies attract ongoing attention with regard to methods for their control. Current systemic pharmacological treatments present problematic side effects. Thus, the possibility of new anti-inflammatory compounds with differing mechanisms of action or biophysical properties is enticing. Cationic polymers, with their ability to act as carriers for other molecules or to form bio-compatible materials, present one such possibility. Although not well described, several polycations such as chitosan and polyarginine, have displayed anti-inflammatory properties. The present work shows the ubiquitous laboratory transfection reagent, polyethylenimine (PEI) and more specifically low molecular weight branched PEI (B-PEI) as also possessing such properties. Using a RAW264.7 murine cell line macrophage as an inflammation model, it is found the B-PEI 700 Da as being capable of reducing the production of several pro-inflammatory molecules induced by the endotoxin lipopolysaccharide. Although further studies are required for elucidation of its mechanisms, the revelation that such a common lab reagent may present these effects has wide-ranging implications, as well as an abundance of possibilities.
Asunto(s)
Lipopolisacáridos , Macrófagos , Polietileneimina , Animales , Polietileneimina/química , Polietileneimina/farmacología , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lipopolisacáridos/farmacología , Células RAW 264.7 , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/química , Biomarcadores/metabolismo , Línea CelularRESUMEN
The emergence of bacterial strains resistant to antibiotics is a major issue in the medical field. Antimicrobial peptides are widely studied as they do not generate as much resistant bacterial strains as conventional antibiotics and present a broad range of activity. Among them, the homopolypeptide poly(l-arginine) presents promising antibacterial properties, especially in the perspective of its use in biomaterials. Linear poly(l-arginine) has been extensively studied but the impact of its 3D structure remains unknown. In this study, the antibacterial properties of newly synthesized branched poly(l-arginine) peptides, belonging to the family of multiple antigenic peptides, are evaluated. First, in vitro activities of the peptides shows that branched poly(l-arginine) is more efficient than linear poly(l-arginine) containing the same number of arginine residues. Surprisingly, peptides with more arms and more residues are not the most effective. To better understand these unexpected results, interactions between these peptides and the membranes of Gram positive and Gram negative bacteria are simulated thanks to molecular dynamic. It is observed that the bacterial membrane is more distorted by the branched structure than by the linear one and by peptides containing smaller arms. This mechanism of action is in full agreement with in vitro results and suggest that our simulations form a robust model to evaluate peptide efficiency towards pathogenic bacteria.
Asunto(s)
Antibacterianos , Simulación de Dinámica Molecular , Péptidos , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Arginina/farmacología , Bacterias , Pruebas de Sensibilidad MicrobianaRESUMEN
Click chemistry, and particularly azide-alkyne cycloaddition, represents one of the principal bioconjugation strategies that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor. Excellent coupling yields were obtained in the presence of bathophenanthrolinedisulphonate, a water-soluble copper-ion chelator, acting as catalyst. No vesicle leakage was triggered by this conjugation reaction, and the coupled mannose ligands were exposed at the surface of the liposomes. The major limitation of Cu(I)-catalyzed click reactions is that this type of conjugation is restricted to liposomes made of saturated (phospho)lipids. To circumvent this constraint, an example of alternate copper-free azide-alkyne click reaction has been developed, and it was applied to the anchoring of a biotin moiety that was fully functional and could be therefore quantified. Molecular tools and results are presented here.
Asunto(s)
Química Clic , Liposomas , Liposomas/química , Química Clic/métodos , Azidas/química , Catálisis , Alquinos/química , Ligandos , Reacción de CicloadiciónRESUMEN
Inspired by the eumelanin aggregates in human skin, polydopamine nanoparticles (PDA NPs) are promising nanovectors for biomedical applications, especially because of their biocompatibility. We synthesized and characterized fluorescent PDA NPs of 10-25 nm diameter based on a protein containing a lysine-glutamate diad (bovine serum albumin, BSA) and determined whether they can penetrate and accumulate in bacterial cells to serve as a marker or drug nanocarrier. Three fluorescent PDA NPs were designed to allow for tracking in three different wavelength ranges by oxidizing BSA/PDA NPs (Ox-BSA/PDA NPs) or labelling with fluorescein 5-isothiocyanate (FITC-BSA/PDA NPs) or rhodamine B isothiocyanate (RhBITC-BSA/PDA NPs). FITC-BSA/PDA NPs and RhBITC-BSA/PDA NPs penetrated and accumulated in both cell wall and inner compartments of Escherichia coli (E. coli) cells. The fluorescence signals were diffuse or displayed aggregate-like patterns with both labelled NPs and free dyes. RhBITC-BSA/PDA NPs led to the most intense fluorescence in cells. Penetration and accumulation of NPs was not accompanied by a bactericidal or inhibitory effect of growth as demonstrated with the Gram-negative E. coli species and confirmed with a Gram-positive bacterial species (Staphylococcus aureus). Altogether, these results allow us to envisage the use of labelled BSA/PDA NPs to track bacteria and carry drugs in the core of bacterial cells.
RESUMEN
Nowadays, implants and prostheses are widely used to repair damaged tissues or to treat different diseases, but their use is associated with the risk of infection, inflammation and finally rejection. To address these issues, new antimicrobial and anti-inflammatory materials are being developed. Aforementioned materials require their thorough preclinical testing before clinical applications can be envisaged. Although many researchers are currently working on new in vitro tissues for drug screening and tissue replacement, in vitro models for evaluation of new biomaterials are just emerging and are extremely rare. In this context, there is an increased need for advanced in vitro models, which would best recapitulate the in vivo environment, limiting animal experimentation and adapted to the multitude of these materials. Here, we overview currently available preclinical methods and models for biological in vitro evaluation of new biomaterials. We describe several biological tests used in biocompatibility assessment, which is a primordial step in new material's development, and discuss existing challenges in this field. In the second part, the emphasis is made on the development of new 3D models and approaches for preclinical evaluation of biomaterials. The third part focuses on the main parameters to consider to achieve the optimal conditions for evaluating biocompatibility; we also overview differences in regulations across different geographical regions and regulatory systems. Finally, we discuss future directions for the development of innovative biomaterial-related assays: in silico models, dynamic testing models, complex multicellular and multiple organ systems, as well as patient-specific personalized testing approaches.
RESUMEN
A growing body of experimental and clinical evidence suggests that rare cell populations, known as cancer stem cells (CSCs), play an important role in the development and therapeutic resistance of several cancers, including glioblastoma. Elimination of these cells is therefore of paramount importance. Interestingly, recent results have shown that the use of drugs that specifically disrupt mitochondria or induce mitochondria-dependent apoptosis can efficiently kill cancer stem cells. In this context, a novel series of platinum(II) complexes bearing N-heterocyclic carbene (NHC) of the type [(NHC)PtI2(L)] modified with the mitochondria targeting group triphenylphosphonium were synthesized. After a complete characterization of the platinum complexes, the cytotoxicity against two different cancer cell lines, including a cancer stem cell line, was investigated. The best compound reduced the cell viability of both cell lines by 50% in the low µM range, with an approximately 300-fold higher anticancer activity on the CSC line compared to oxaliplatin. Finally, mechanistic studies showed that the triphenylphosphonium functionalized platinum complexes significantly altered mitochondrial function and also induced atypical cell death.
Asunto(s)
Antineoplásicos , Glioblastoma , Humanos , Platino (Metal)/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Muerte CelularRESUMEN
Photolytic reactions allow the optical control of the liberation of biological effectors by photolabile protecting groups. The development of versatile technologies enabling the use of deep-red or NIR light excitation still represents a challenging issue, in particular for light-induced drug release (e.g., light-induced prodrug activation). Here, light-sensitive biocompatible lipid nanocapsules able to liberate an antitumoral drug through photolysis are presented. It is demonstrated that original photon upconverting nanoparticles (LNC-UCs) chemically conjugated to a coumarin-based photocleavable linker can quantitatively and efficiently release a drug by upconversion luminescence-assisted photolysis using a deep-red excitation wavelength. In addition, it is also able to demonstrate that such nanoparticles are stable in the dark, without any drug leakage in the absence of light. These findings open new avenues to specifically liberate diverse drugs using deep-red or NIR excitations for future therapeutic applications in nanomedicine.
Asunto(s)
Nanocápsulas , Nanopartículas , Profármacos , Profármacos/farmacología , Preparaciones de Acción Retardada/farmacología , CumarinasRESUMEN
The main objectives of this work were to formulate liposomes encapsulating highly mineralized thermal waters (TWs) and to study anti-inflammatory effect of free and encapsulated thermal waters on RAW 264.7 macrophage cells stimulated with lipopolysaccharide (LPS). TWs-loaded conventional and deformable liposomes (TWs-Lip and TWs-DLip) were prepared by sonication and extrusion, respectively. They were considered for their vesicle size, zeta potential, entrapment efficiency, physical stability and in vitro anti-inflammatory effect. Formulated liposome suspensions have a low polydispersity and nanometric size range with zeta potential values close to zero. The vesicle size was stable for 30 days. Entrapment efficiency of TWs was above 90% in conventional liposomes and 70% in deformable liposomes. Pretreatment of LPS-stimulated murine macrophages, with free and liposome-encapsulated TWs, resulted in a significant reduction in nitric oxide (NO) production and modulated tumor necrosis factor-α (TNF-α) production suggesting an anti-inflammatory effect which was even more striking with TWs-Lip and TWs-DLip. Liposome formulations may offer a suitable approach for transdermal delivery of TWs, indicated in inflammatory skin diseases.
Asunto(s)
Liposomas , Macrófagos , Administración Cutánea , Animales , Antiinflamatorios/farmacología , Lipopolisacáridos , Ratones , Factor de Necrosis Tumoral alfaRESUMEN
Impairment of oligodendrocyte progenitor cell (OPC) differentiation into oligodendrocytes and chronic inflammation are key determinants of poor remyelination observed in diseases such as multiple sclerosis. For many pro-myelinating molecules, the therapeutic potential is hindered by poor solubility or limited access to the targeted cells. A promising approach to improve the delivery of those molecules to OPC is to encapsulate them in functionalized Lipid Nanocapsules (LNC). We aimed to develop the first OPC-targeting LNC, by grafting an anti-PDGFRα antibody on the surface of the LNC using several strategies and evaluating the interaction with PDGFRα via ELISA. We found that only site-selective click-chemistry grafting maintained anti-PDGFRα/PDGFRα association, which was confirmed in vitro on primary rat OPC. In conclusion, we demonstrated that it was possible to produce anti-PDGFRα functionalized LNC, we confirmed the antibody's ability to recognize its receptor after grafting and we optimized techniques to characterize antibody functionalized LNC.
Asunto(s)
Nanocápsulas , Células Precursoras de Oligodendrocitos , Remielinización , Animales , Diferenciación Celular , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Ratas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismoRESUMEN
Cationic polymers such as polyethylenimine (PEI) have found a pervasive place in laboratories across the world as gene delivery agents. However, their applications are not limited to this role, having found a place as delivery agents for drugs, in complexes known as polymer-drug conjugates (PDCs). Yet a potentially underexplored domain of research is in their inherent potential as anti-cancer therapeutic agents, which has been indicated by several studies. Even more interesting is the recent observation that certain polycations may present a significantly greater toxicity towards the clinically important cancer stem cell (CSC) niche than towards more differentiated bulk tumour cells. These cells, which possess the stem-like characteristics of self-renewal and differentiation, are highly implicated in cancer drug resistance, tumour recurrence and poor clinical prognosis. The search for compounds which may target and eliminate these cells is thus of great research interest. As such, the observation in our previous study on a PEI-based PDC which showed a considerably higher toxicity of PEI towards glioblastoma CSCs (GSCs) than on more differentiated glioma (U87) cells led us to investigate other cationic polymers for a similar effect. The evaluation of the toxicity of a range of different types of polycations, and an investigation into the potential source of GSC's sensitivity to such compounds is thus described.
RESUMEN
Four novel water-soluble lipid immunoadjuvants were designed, synthesized and characterized by MS and NMR. They all induce mouse dendritic cell maturation and B cell proliferation. We demonstrate that in spite of the chemical modification, the four compounds remain TLR2 agonists.
Asunto(s)
Adyuvantes Inmunológicos/farmacología , Linfocitos B/citología , Proliferación Celular/efectos de los fármacos , Células Dendríticas/citología , Lípidos/farmacología , Receptor Toll-Like 2/metabolismo , Animales , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Ratones , Solubilidad , AguaRESUMEN
Multilayered coated liposomes were prepared using the layer-by-layer (LbL) technique in an effort to improve their stability in biological media. The formulation strategy was based on the alternate deposition of two biocompatible and biodegradable polyelectrolytes - poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA) - on negatively charged small unilamellar vesicles (SUVs). Some parameters of the formulation process were optimized such as the polyelectrolyte concentration and the purification procedure. This optimized procedure has allowed the development of very homogeneous formulations of liposomes coated with up to 6 layers of polymers (so-called layersomes). The coating was characterized by dynamic light scattering (DLS), zeta potential measurements and Förster resonance energy transfer (FRET) between two fluorescently labeled polyelectrolytes. Studies on the stability of the formulations at 4 °C in a buffered solution have shown that most structures are stable over 1 month without impacting their encapsulation capacity. In addition, fluorophore release experiments have demonstrated a better resistance of the layersomes in the presence of a non-ionic detergent (Triton™ X-100) as well as in the presence of phospholipase A2 and human plasma. In conclusion, new multilayered liposomes have been developed to increase the stability of conventional liposomes in biological environments.
Asunto(s)
Química Farmacéutica , Polielectrolitos/química , Ácido Poliglutámico/química , Polilisina/química , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Humanos , Liposomas , Octoxinol/química , Fosfolipasas A2/metabolismo , Polielectrolitos/metabolismo , Ácido Poliglutámico/metabolismo , Polilisina/metabolismoRESUMEN
Liposomes are powerful tools for the optimization of peptides and adjuvant composition in cancer vaccines. Here, we take advantage of a liposomal platform versatility to develop three vaccine candidates associating a peptide from HA influenza virus protein as CD4 epitope, a peptide from HPV16 E7 oncoprotein as CD8 epitope and TLR4, TLR2/6 or NOD1 agonists as adjuvant. Liposomal vaccine containing MPLA (TLR4 liposomes), are the most effective treatment against the HPV-transformed orthotopic lung tumor mouse model, TC-1. This vaccine induces a potent Th1-oriented antitumor immunity, which leads to a significant reduction in tumor growth and a prolonged survival of mice, even when injected after tumor appearance. This efficacy is dependent on CD8+ T cells. Subcutaneous injection of this treatment induces the migration of skin DCs to draining lymph nodes. Interestingly, TLR2/6 liposomes trigger a weaker Th1-immune response which is not sufficient for the induction of a prolonged antitumor activity. Although NOD1 liposome treatment results in the control of early tumor growth, it does not extend mice survival. Surprisingly, the antitumor activity of NOD1 vaccine is not associated with a specific adaptive immune response. This study shows that our modulable platform can be used for the strategical development of vaccines.
Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Liposomas/química , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas NLR/agonistas , Receptores Toll-Like/agonistas , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/química , Péptidos/farmacologíaRESUMEN
Therapeutic cancer vaccines need thoughtful design to efficiently deliver appropriate antigens and adjuvants to the immune system. In the current study, we took advantage of the versatility of a liposomal platform to conceive and customize vaccines containing three elements needed for the induction of efficient antitumor immunity: i) a CD4 epitope peptide able to activate CD4+ T helper cells, ii) a CD8 tumor-specific epitope peptide recognized by CD8+ T cytotoxic cells and iii) Pattern Recognition Receptor (PRR) agonists which stand as adjuvants. Each type of component, conjugated to liposomes, was evaluated individually by comparing their vaccine efficacy after immunization of naïve mice. These screening steps resulted in the optimization of three liposomal constructs bearing a peptide from HA influenza virus protein as CD4 epitope, a peptide from HPV16 E7 oncoprotein as CD8 epitope and TLR4, TLR2/6 or NOD1 agonists as adjuvant, which displayed antitumor efficiency against a mouse model of disseminated tumors transformed by HPV16. Our results validated the interest of our customizable liposomal platform as delivery system for cancer vaccination. We also demonstrated its interest as tool for vaccine design allowing the strategical selection of components, and the evaluation of epitope-adjuvant association.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Epítopos/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Péptidos/administración & dosificación , Animales , Hemaglutininas , Papillomavirus Humano 16 , Liposomas , Masculino , Ratones Endogámicos C57BL , Proteínas ViralesRESUMEN
An important challenge for the development of new generations of vaccines is the efficient delivery of antigens to antigen presenting cells such as dendritic cells. In the present study we compare the interaction of plain and targeted liposomes, containing mono-, di-, and tetraantennary mannosyl lipid derivatives, with human monocyte-derived immature dendritic cells (iDCs). Whereas efficient mannose receptor-mediated endocytosis by iDCs was observed for the mannosylated liposomes, in contrast, only nonspecific interaction with little uptake was observed with plain liposomes. In accordance with the clustering effect, liposomes prepared with multibranched mannosylated lipids displayed higher binding affinity for the mannose receptor than vesicles containing the monomannosylated analogs. Importantly, we have found that dimannosylated ligands present at the surface of the liposomes were as efficient as tetramannosylated ones to engage in multidentate interactions with the mannose receptor of iDCs, resulting in both cases in an effective uptake/endocytosis. This result will greatly facilitate, from a practical standpoint, the design of mannose-targeted vaccination constructs. Moreover, we showed that mannose-mediated uptake of liposomes did not result in an activation of iDCs. Altogether, our results suggest that antigen-associated targeted liposomes containing diantennary mannosylated lipids could be effective vectors for vaccines when combined with additional DC activation signals.
Asunto(s)
Células Dendríticas/metabolismo , Liposomas/química , Liposomas/metabolismo , Manosa/química , Supervivencia Celular/efectos de los fármacos , Ácido Clodrónico/química , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Endocitosis , Fluoresceínas/química , Humanos , Espacio Intracelular/metabolismo , Ligandos , Liposomas/síntesis química , Liposomas/toxicidadRESUMEN
By focusing on rat glioma, we elucidated whether new lipid nanocapsules (LNC) were able to improve anticancer hydrophobic drug bioavailability while also overcoming multidrug resistance. Blank LNCs and LNCs loaded with the antineoplastic agent paclitaxel were formulated by an emulsion inversion phase process. Expression of efflux pumps by rat glioma cells was assessed by reverse transcription-PCR, Western blot, and immunohistochemistry, and their activity was followed using the tracer (99)Tc(m)-methoxyisobutylisonitrile. Modalities of LNC action were addressed by using confocal microscopy detection of fluorescently labeled LNCs, fluorescence-activated cell sorting, high-performance liquid chromatography measurement of paclitaxel release, and analysis of tumor cell growth. This revealed an interaction between LNCs and efflux pumps that resulted in an inhibition of multidrug resistance in glioma cells, both in culture and in cell implants in animals. LNCs were able to target the intracellular compartment of glioma cells, a mechanism that was abrogated by using intracellular cholesterol inhibitors but not by clathrin-coated pit or caveolae uptake inhibitors. This result can be correlated to the LNC inhibitory effects on efflux pump activity that is itself known to be stimulated by intracellular cholesterol. In parallel, we showed that paclitaxel-loaded LNCs were active reservoirs from which paclitaxel could be released. Finally, we established that paclitaxel-loaded LNCs were more efficient than the commercially available paclitaxel formulation (Taxol) for clinical use, thus reducing tumor expansion in vitro and in vivo. Considering the physiologically compatible nature of LNC excipients, these data may represent an important step towards the development of new clinical therapeutic strategies against cancers.