RESUMEN
Intrauterine growth-restricted (IUGR) fetuses exhibit systemic inflammation that contributes to programmed deficits in myoblast function and muscle growth. Thus, we sought to determine if targeting fetal inflammation improves muscle growth outcomes. Heat stress-induced IUGR fetal lambs were infused with eicosapentaenoic acid (IUGR+EPA; n = 9) or saline (IUGR; n = 8) for 5 days during late gestation and compared to saline-infused controls (n = 11). Circulating eicosapentaenoic acid was 42% less (p < 0.05) for IUGR fetuses but was recovered in IUGR+EPA fetuses. The infusion did not improve placental function or fetal O2 but resolved the 67% greater (p < 0.05) circulating TNFα observed in IUGR fetuses. This improved myoblast function and muscle growth, as the 23% reduction (p < 0.05) in the ex vivo differentiation of IUGR myoblasts was resolved in IUGR+EPA myoblasts. Semitendinosus, longissimus dorsi, and flexor digitorum superficialis muscles were 24-39% lighter (p < 0.05) for IUGR but not for IUGR+EPA fetuses. Elevated (p < 0.05) IL6R and reduced (p < 0.05) ß2 adrenoceptor content in IUGR muscle indicated enhanced inflammatory sensitivity and diminished ß2 adrenergic sensitivity. Although IL6R remained elevated, ß2 adrenoceptor deficits were resolved in IUGR+EPA muscle, demonstrating a unique underlying mechanism for muscle dysregulation. These findings show that fetal inflammation contributes to IUGR muscle growth deficits and thus may be an effective target for intervention.
RESUMEN
Stress-induced fetal programming diminishes ß2 adrenergic tone, which coincides with intrauterine growth restriction (IUGR) and lifelong metabolic dysfunction. We determined if stimulating ß2 adrenergic activity in IUGR-born lambs would improve metabolic outcomes. IUGR lambs that received daily injections of saline or the ß2 agonist clenbuterol from birth to 60 days were compared with controls from pair-fed thermoneutral pregnancies. As juveniles, IUGR lambs exhibited systemic inflammation and robust metabolic dysfunction, including greater (p < 0.05) circulating TNFα, IL-6, and non-esterified fatty acids, increased (p < 0.05) intramuscular glycogen, reduced (p < 0.05) circulating IGF-1, hindlimb blood flow, glucose-stimulated insulin secretion, and muscle glucose oxidation. Daily clenbuterol fully recovered (p < 0.05) circulating TNFα, IL-6, and non-esterified fatty acids, hindlimb blood flow, muscle glucose oxidation, and intramuscular glycogen. Glucose-stimulated insulin secretion was partially recovered (p < 0.05) in clenbuterol-treated IUGR lambs, but circulating IGF-1 was not improved. Circulating triglycerides and HDL cholesterol were elevated (p < 0.05) in clenbuterol-treated IUGR lambs, despite being normal in untreated IUGR lambs. We conclude that deficient ß2 adrenergic regulation is a primary mechanism for several components of metabolic dysfunction in IUGR-born offspring and thus represents a potential therapeutic target for improving metabolic outcomes. Moreover, benefits from the ß2 agonist were likely complemented by its suppression of IUGR-associated inflammation.
RESUMEN
Precursors to flavor are important to its development, yet little is known about the intrinsic products of metabolism that influence flavor. Our objective was to use untargeted metabolomics and volatile aroma compounds to predict expert and consumer sensory traits. USDA Select and upper 2/3 Choice beef strip loins were wet aged for 10 or 20 d and then cut into steaks, vacuum-packaged, and frozen. Steaks were cooked to 63 °C, 71 °C, or 80 °C end-point internal steak temperature. USDA Choice steaks had more intense beef flavor identity, brown, roasted, fat-like, salty, sweet, sour, umami, buttery, and overall sweet flavors compared to USDA Select steaks (P < 0.05). Steaks cooked to 80 °C had more intense beef identity, brown, roasted, and umami flavors than steaks cooked to a lower degree of doneness. Steaks cooked to either 63 °C or 71 °C had more intense bloody, metallic, and sour flavors and were juicier, more tender, and had less connective tissue than steaks cooked to a higher degree of doneness. Volatile aroma compounds increased (P < 0.05) in Choice steaks aged for 20 d, while cooking steaks to 80 increased aldehydes, ketones, and pyrazines. Raw steaks had 69 small-molecule metabolomic compounds shared across all four quality grade x aging combinations, and discriminant analysis correctly categorized (P < 0.05) these metabolites. Metabolites and volatiles can be used to predict (r2 > 0.85) expert and consumer sensory panel descriptors and liking.
Asunto(s)
Carne , Carne Roja , Animales , Bovinos , Odorantes , Culinaria , Metabolómica , Comportamiento del ConsumidorRESUMEN
Background: Intrauterine growth restriction (IUGR) is associated with reduced ß2 adrenergic sensitivity, which contributes to poor postnatal muscle growth. The objective of this study was to determine if stimulating ß2 adrenergic activity postnatal would rescue deficits in muscle growth, body composition, and indicators of metabolic homeostasis in IUGR offspring. Methods: Time-mated ewes were housed at 40°C from day 40 to 95 of gestation to produce IUGR lambs. From birth, IUGR lambs received daily IM injections of 0.8 µg/kg clenbuterol HCl (IUGR+CLEN; n = 11) or saline placebo (IUGR; n = 12). Placebo-injected controls (n = 13) were born to pair-fed thermoneutral ewes. Biometrics were assessed weekly and body composition was estimated by ultrasound and bioelectrical impedance analysis (BIA). Lambs were necropsied at 60 days of age. Results: Bodyweights were lighter (p ≤ 0.05) for IUGR and IUGR+CLEN lambs than for controls at birth, day 30, and day 60. Average daily gain was less (p ≤ 0.05) for IUGR lambs than controls and was intermediate for IUGR+CLEN lambs. At day 58, BIA-estimated whole-body fat-free mass and ultrasound-estimated loin eye area were less (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. At necropsy, loin eye area and flexor digitorum superficialis muscles were smaller (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Longissimus dorsi protein content was less (p ≤ 0.05) and fat-to-protein ratio was greater (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Semitendinosus from IUGR lambs had less (p ≤ 0.05) ß2 adrenoreceptor content, fewer (p ≤ 0.05) proliferating myoblasts, tended to have fewer (p = 0.08) differentiated myoblasts, and had smaller (p ≤ 0.05) muscle fibers than controls. Proliferating myoblasts and fiber size were recovered (p ≤ 0.05) in IUGR+CLEN lambs compared to IUGR lambs, but ß2 adrenoreceptor content and differentiated myoblasts were not recovered. Semitendinosus lipid droplets were smaller (p ≤ 0.05) in size for IUGR lambs than for controls and were further reduced (p ≤ 0.05) in size for IUGR+CLEN lambs. Conclusion: These findings show that clenbuterol improved IUGR deficits in muscle growth and some metabolic parameters even without recovering the deficit in ß2 adrenoreceptor content. We conclude that IUGR muscle remained responsive to ß2 adrenergic stimulation postnatal, which may be a strategic target for improving muscle growth and body composition in IUGR-born offspring.
RESUMEN
The impact of intrauterine growth restriction (IUGR) on health in humans is well-recognized. It is the second leading cause of perinatal mortality worldwide, and it is associated with deficits in metabolism and muscle growth that increase lifelong risk for hypertension, obesity, hyperlipidemia, and type 2 diabetes. Comparatively, the barrier that IUGR imposes on livestock production is less recognized by the industry. Meat animals born with low birthweight due to IUGR are beset with greater early death loss, inefficient growth, and reduced carcass merit. These animals exhibit poor feed-to-gain ratios, less lean mass, and greater fat deposition, which increase production costs and decrease value. Ultimately, this reduces the amount of meat produced by each animal and threatens the economic sustainability of livestock industries. Intrauterine growth restriction is most commonly the result of fetal programming responses to placental insufficiency, but the exact mechanisms by which this occurs are not well-understood. In uncompromised pregnancies, inflammatory cytokines are produced at modest rates by placental and fetal tissues and play an important role in fetal development. However, unfavorable intrauterine conditions can cause cytokine activity to be excessive during critical windows of fetal development. Our recent evidence indicates that this impacts developmental programming of muscle growth and metabolism and contributes to the IUGR phenotype. In this review, we outline the role of inflammatory cytokine activity in the development of normal and IUGR phenotypes. We also highlight the contributions of sheep and other animal models in identifying mechanisms for IUGR pathologies.