Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Food Sci Technol ; 57(9): 3193-3200, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32713959

RESUMEN

Several studies demonstrated that protein from whey milk could be a new strategy to reduce energy intake and increase satiety. Sheep whey has high protein content, but it is also rich in lactose. The aim of this study was to screening different ultrafiltration membranes to separate protein and lactose from sheep whey in one step. Protein was recovered in the concentrate feed, and lactose passed through three membranes and was recovered in the permeate feed. Membranes with different chemical composition and molecular weight cut-offs were assayed, and the influence of operating pressure and lactose concentration feed in the permeate flux and lactose rejection coefficients were studied. Lactose separation was not affected by pressure in GR60PP or GR90PP, and 85% and 80%, respectively of the lactose was separated into permeate feed. When the feed concentration increased, lactose separation remained stable in all three membranes, being GR60PP the most efficient, as 90% of the disaccharides were separated. In all cases 100% of the protein was recovered. Finally, the Spiegler-Kedem-Katchalsky model perfectly fitted the results obtained about lactose rejection coefficients.

2.
Materials (Basel) ; 16(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36836999

RESUMEN

In this work, three types of ultrafiltration membranes with different characteristics (GR60PP, RC70PP and GR80PP) have been tested for the removal of the dye methyl green. The tests were first carried out with the three membranes without any modification and then with the membranes' surfaces modified with reduced graphene oxide (rGO). The modification was achieved through physical treatment. The CR70PP membrane did not support the modification treatment and was discarded. The other membranes were initially characterized with distilled water tests to study the permeability to the solvent, and later, the permeate fluxes and the values of rejection coefficients were obtained at different working pressures with a fixed dye initial concentration. In addition, SEM images and SEM-EDX spectra of the native and modified membranes were obtained before and after the dye tests. The GR60PP membrane has shown the best results in relation to the modification because it has increased its rejection levels. On the opposite, the GR80PP membrane performs better without surface modification, achieving the highest rejection values and the highest permeate fluxes in its native form.

3.
Membranes (Basel) ; 13(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37999354

RESUMEN

The removal of three emerging pollutants: carbamazepine, ketoprofen, and bisphenol A, has been studied using the nanofiltration flat sheet membrane NF99HF. The removal efficiencies of the membrane have been evaluated by two system characteristic parameters: permeate flux and rejection coefficient. The influence of two operating variables has been analysed: operating pressure and feed concentration. Before and after the tests with emerging pollutants, the membrane has been characterized by determining its water permeability coefficient and its magnesium chloride rejection coefficient to find out if the removal of emerging pollutants causes membrane fouling. The results show that operating pressure has significant separation effects, obtaining the highest efficiencies at a pressure of 20 bar for pollutant concentrations between 5 and 25 mg/L. Moreover, rejection of ketoprofen was found to be dependent on electrostatic repulsion, while rejection of bisphenol A was significantly affected by adsorption onto the membrane. Finally, the experimental data have been fitted to the solution diffusion model and to the simplified model of Spiegler-Kedem-Katchalsky to predict the behaviour of the nanofiltration membrane in the removal of the tested pollutants. Good agreement between the experimental and predicted carbamazepine and bisphenol A data has been obtained with each model, respectively.

4.
Membranes (Basel) ; 12(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35736268

RESUMEN

The presence of pharmaceutical products, and their metabolites, in wastewater has become a focus of growing environmental concern. Among these pharmaceutical products, ibuprofen (IBU) is one of the most consumed non-steroidal anti-inflammatory drugs and it can enter the environment though both human and animal consumption, because it is not entirely absorbed by the body, and the pharmaceutical industry wastewater. Nanofiltration has been described as an attractive process for the treatment of wastewater containing pharmaceutical products. In this paper, the modification of a polysulfone nanofiltration membrane by coating with graphene oxide (GO) and reduced graphene oxide (RGO) has been carried out. The morphology and elemental composition of the active layer of unmodified and modified membranes were analyzed by scanning electronic microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), respectively. Initial characterization membranes was carried out, studying their water permeability coefficient and their permeate flux and rejection coefficients, at different applied pressures, using magnesium chloride solutions. The behavior of both pristine and coated membranes against ibuprofen solutions were analyzed by studying the permeate fluxes and the rejection coefficients at different pressures and at different contaminant concentrations. The results have shown that both GO and RGO coated membranes lead to higher values of ibuprofene rejection than that of uncoated membrane, the latter being the one that presents better results in the studies of permeability, selectivity, and fouling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA