Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(26): 5826-5839.e18, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38101409

RESUMEN

Super-enhancers are compound regulatory elements that control expression of key cell identity genes. They recruit high levels of tissue-specific transcription factors and co-activators such as the Mediator complex and contact target gene promoters with high frequency. Most super-enhancers contain multiple constituent regulatory elements, but it is unclear whether these elements have distinct roles in activating target gene expression. Here, by rebuilding the endogenous multipartite α-globin super-enhancer, we show that it contains bioinformatically equivalent but functionally distinct element types: classical enhancers and facilitator elements. Facilitators have no intrinsic enhancer activity, yet in their absence, classical enhancers are unable to fully upregulate their target genes. Without facilitators, classical enhancers exhibit reduced Mediator recruitment, enhancer RNA transcription, and enhancer-promoter interactions. Facilitators are interchangeable but display functional hierarchy based on their position within a multipartite enhancer. Facilitators thus play an important role in potentiating the activity of classical enhancers and ensuring robust activation of target genes.


Asunto(s)
Regulación de la Expresión Génica , Súper Potenciadores , Transcripción Genética , Globinas alfa , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Globinas alfa/genética
2.
Mol Cell ; 81(5): 983-997.e7, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33539786

RESUMEN

Gene transcription occurs via a cycle of linked events, including initiation, promoter-proximal pausing, and elongation of RNA polymerase II (Pol II). A key question is how transcriptional enhancers influence these events to control gene expression. Here, we present an approach that evaluates the level and change in promoter-proximal transcription (initiation and pausing) in the context of differential gene expression, genome-wide. This combinatorial approach shows that in primary cells, control of gene expression during differentiation is achieved predominantly via changes in transcription initiation rather than via release of Pol II pausing. Using genetically engineered mouse models, deleted for functionally validated enhancers of the α- and ß-globin loci, we confirm that these elements regulate Pol II recruitment and/or initiation to modulate gene expression. Together, our data show that gene expression during differentiation is regulated predominantly at the level of initiation and that enhancers are key effectors of this process.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Iniciación de la Transcripción Genética , Globinas alfa/genética , Globinas beta/genética , Animales , Diferenciación Celular , Exones , Feto , Regulación de la Expresión Génica , Biblioteca de Genes , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Intrones , Células K562 , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal , Globinas alfa/deficiencia , Globinas beta/deficiencia
3.
Nat Rev Genet ; 22(3): 154-168, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33235358

RESUMEN

Precise patterns of gene expression in metazoans are controlled by three classes of regulatory elements: promoters, enhancers and boundary elements. During differentiation and development, these elements form specific interactions in dynamic higher-order chromatin structures. However, the relationship between genome structure and its function in gene regulation is not completely understood. Here we review recent progress in this field and discuss whether genome structure plays an instructive role in regulating gene expression or is a reflection of the activity of the regulatory elements of the genome.


Asunto(s)
Regulación de la Expresión Génica/genética , Genoma/genética , Animales , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Humanos , Regiones Promotoras Genéticas/genética
4.
Blood ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457773

RESUMEN

Haemoglobin Bart's hydrops fetalis syndrome (BHFS) represents the most severe form of α-thalassaemia, arising from deletion of the duplicated α-globin genes from both alleles. The absence of α-globin leads to the formation of non-functional haemoglobin Bart's (γ4) or haemoglobin H (HbH: ß4) resulting in severe anaemia, tissue hypoxia, and, in some cases, variable congenital or neurocognitive abnormalities. BHFS is the most common cause of hydrops fetalis in Southeast Asia; however, owing to global migration, the burden of this condition is increasing worldwide. With the availability of intensive perinatal care and intrauterine transfusions, an increasing number of patients survive with this condition. The current approach to long-term management of survivors involves regular blood transfusions and iron chelation, a task made challenging by the need for intensified transfusions to suppress the production of non-functional HbH-containing erythrocytes. While our knowledge of outcomes of this condition is evolving, it seems, in comparison to individuals with transfusion-dependent ß-thalassaemia, those with BHFS may face an elevated risk of complications arising from chronic anaemia and hypoxia, ongoing haemolysis, iron overload, and from their respective treatments. Although stem cell transplantation remains a viable option for a select few, it is not without potential side effects. Looking ahead, potential advancements in the form of genetic engineering and innovative therapeutic approaches, such as the reactivation of embryonic α-like globin gene expression, hold promise for furthering the treatment of this condition. Prevention remains a crucial aspect of care, particularly in areas with high prevalence or limited resources.

5.
Cell ; 143(3): 367-78, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21029860

RESUMEN

ATRX is an X-linked gene of the SWI/SNF family, mutations in which cause syndromal mental retardation and downregulation of α-globin expression. Here we show that ATRX binds to tandem repeat (TR) sequences in both telomeres and euchromatin. Genes associated with these TRs can be dysregulated when ATRX is mutated, and the change in expression is determined by the size of the TR, producing skewed allelic expression. This reveals the characteristics of the affected genes, explains the variable phenotypes seen with identical ATRX mutations, and illustrates a new mechanism underlying variable penetrance. Many of the TRs are G rich and predicted to form non-B DNA structures (including G-quadruplex) in vivo. We show that ATRX binds G-quadruplex structures in vitro, suggesting a mechanism by which ATRX may play a role in various nuclear processes and how this is perturbed when ATRX is mutated.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Cromosomas de los Mamíferos/metabolismo , Islas de CpG , ADN Helicasas/genética , ADN Ribosómico/metabolismo , G-Cuádruplex , Expresión Génica , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Humanos , Ratones , Repeticiones de Minisatélite , Mutación , Proteínas Nucleares/genética , Telómero/metabolismo , Proteína Nuclear Ligada al Cromosoma X
6.
Cell ; 140(5): 678-91, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20211137

RESUMEN

The incorporation of histone H3 variants has been implicated in the epigenetic memory of cellular state. Using genome editing with zinc-finger nucleases to tag endogenous H3.3, we report genome-wide profiles of H3 variants in mammalian embryonic stem cells and neuronal precursor cells. Genome-wide patterns of H3.3 are dependent on amino acid sequence and change with cellular differentiation at developmentally regulated loci. The H3.3 chaperone Hira is required for H3.3 enrichment at active and repressed genes. Strikingly, Hira is not essential for localization of H3.3 at telomeres and many transcription factor binding sites. Immunoaffinity purification and mass spectrometry reveal that the proteins Atrx and Daxx associate with H3.3 in a Hira-independent manner. Atrx is required for Hira-independent localization of H3.3 at telomeres and for the repression of telomeric RNA. Our data demonstrate that multiple and distinct factors are responsible for H3.3 localization at specific genomic locations in mammalian cells.


Asunto(s)
Histonas/análisis , Telómero/química , Animales , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Madre Embrionarias/metabolismo , Genoma , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , Telómero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
7.
Genome Res ; 30(3): 472-484, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132109

RESUMEN

Thousands of epigenomic data sets have been generated in the past decade, but it is difficult for researchers to effectively use all the data relevant to their projects. Systematic integrative analysis can help meet this need, and the VISION project was established for validated systematic integration of epigenomic data in hematopoiesis. Here, we systematically integrated extensive data recording epigenetic features and transcriptomes from many sources, including individual laboratories and consortia, to produce a comprehensive view of the regulatory landscape of differentiating hematopoietic cell types in mouse. By using IDEAS as our integrative and discriminative epigenome annotation system, we identified and assigned epigenetic states simultaneously along chromosomes and across cell types, precisely and comprehensively. Combining nuclease accessibility and epigenetic states produced a set of more than 200,000 candidate cis-regulatory elements (cCREs) that efficiently capture enhancers and promoters. The transitions in epigenetic states of these cCREs across cell types provided insights into mechanisms of regulation, including decreases in numbers of active cCREs during differentiation of most lineages, transitions from poised to active or inactive states, and shifts in nuclease accessibility of CTCF-bound elements. Regression modeling of epigenetic states at cCREs and gene expression produced a versatile resource to improve selection of cCREs potentially regulating target genes. These resources are available from our VISION website to aid research in genomics and hematopoiesis.


Asunto(s)
Epigénesis Genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Animales , Ratones , Elementos Reguladores de la Transcripción , Transcriptoma
8.
Blood ; 136(3): 269-278, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32396940

RESUMEN

The oxygen transport function of hemoglobin (HB) is thought to have arisen ∼500 million years ago, roughly coinciding with the divergence between jawless (Agnatha) and jawed (Gnathostomata) vertebrates. Intriguingly, extant HBs of jawless and jawed vertebrates were shown to have evolved twice, and independently, from different ancestral globin proteins. This raises the question of whether erythroid-specific expression of HB also evolved twice independently. In all jawed vertebrates studied to date, one of the HB gene clusters is linked to the widely expressed NPRL3 gene. Here we show that the nprl3-linked hb locus of a jawless vertebrate, the river lamprey (Lampetra fluviatilis), shares a range of structural and functional properties with the equivalent jawed vertebrate HB locus. Functional analysis demonstrates that an erythroid-specific enhancer is located in intron 7 of lamprey nprl3, which corresponds to the NPRL3 intron 7 MCS-R1 enhancer of jawed vertebrates. Collectively, our findings signify the presence of an nprl3-linked multiglobin gene locus, which contains a remote enhancer that drives globin expression in erythroid cells, before the divergence of jawless and jawed vertebrates. Different globin genes from this ancestral cluster evolved in the current NPRL3-linked HB genes in jawless and jawed vertebrates. This provides an explanation of the enigma of how, in different species, globin genes linked to the same adjacent gene could undergo convergent evolution.


Asunto(s)
Eritrocitos/metabolismo , Evolución Molecular , Proteínas de Peces , Regulación de la Expresión Génica/fisiología , Hemoglobinas , Lampreas , Animales , Proteínas de Peces/biosíntesis , Proteínas de Peces/genética , Hemoglobinas/biosíntesis , Hemoglobinas/genética , Lampreas/genética , Lampreas/metabolismo , Familia de Multigenes
11.
J Med Genet ; 58(3): 185-195, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32518175

RESUMEN

BACKGROUND: Congenital dyserythropoietic anaemia type I (CDA-I) is a hereditary anaemia caused by biallelic mutations in the widely expressed genes CDAN1 and C15orf41. Little is understood about either protein and it is unclear in which cellular pathways they participate. METHODS: Genetic analysis of a cohort of patients with CDA-I identifies novel pathogenic variants in both known causative genes. We analyse the mutation distribution and the predicted structural positioning of amino acids affected in Codanin-1, the protein encoded by CDAN1. Using western blotting, immunoprecipitation and immunofluorescence, we determine the effect of particular mutations on both proteins and interrogate protein interaction, stability and subcellular localisation. RESULTS: We identify six novel CDAN1 mutations and one novel mutation in C15orf41 and uncover evidence of further genetic heterogeneity in CDA-I. Additionally, population genetics suggests that CDA-I is more common than currently predicted. Mutations are enriched in six clusters in Codanin-1 and tend to affect buried residues. Many missense and in-frame mutations do not destabilise the entire protein. Rather C15orf41 relies on Codanin-1 for stability and both proteins, which are enriched in the nucleolus, interact to form an obligate complex in cells. CONCLUSION: Stability and interaction data suggest that C15orf41 may be the key determinant of CDA-I and offer insight into the mechanism underlying this disease. Both proteins share a common pathway likely to be present in a wide variety of cell types; however, nucleolar enrichment may provide a clue as to the erythroid specific nature of CDA-I. The surprisingly high predicted incidence of CDA-I suggests that better ascertainment would lead to improved patient care.


Asunto(s)
Anemia Diseritropoyética Congénita/genética , Predisposición Genética a la Enfermedad , Glicoproteínas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Anemia Diseritropoyética Congénita/patología , Femenino , Regulación de la Expresión Génica/genética , Pruebas Genéticas , Genética de Población , Humanos , Masculino , Complejos Multiproteicos/genética , Mutación/genética
12.
Haematologica ; 106(11): 2960-2970, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33121234

RESUMEN

The investigation of inherited disorders of erythropoiesis has elucidated many of the principles underlying the production of normal red blood cells and how this is perturbed in human disease. Congenital Dyserythropoietic Anaemia type 1 (CDA-I) is a rare form of anaemia caused by mutations in two genes of unknown function: CDAN1 and CDIN1 (previously called C15orf41), whilst in some cases, the underlying genetic abnormality is completely unknown. Consequently, the pathways affected in CDA-I remain to be discovered. To enable detailed analysis of this rare disorder we have validated a culture system which recapitulates all of the cardinal haematological features of CDA-I, including the formation of the pathognomonic 'spongy' heterochromatin seen by electron microscopy. Using a variety of cell and molecular biological approaches we discovered that erythroid cells in this condition show a delay during terminal erythroid differentiation, associated with increased proliferation and widespread changes in chromatin accessibility. We also show that the proteins encoded by CDAN1 and CDIN1 are enriched in nucleoli which are structurally and functionally abnormal in CDA-I. Together these findings provide important pointers to the pathways affected in CDA-I which for the first time can now be pursued in the tractable culture system utilised here.


Asunto(s)
Anemia Diseritropoyética Congénita , Anemia Diseritropoyética Congénita/diagnóstico , Anemia Diseritropoyética Congénita/genética , Células Eritroides , Eritropoyesis , Glicoproteínas/genética , Humanos , Proteínas Nucleares/genética
13.
J Med Genet ; 57(6): 414-421, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32005695

RESUMEN

BACKGROUND: Deletions removing 100s-1000s kb of DNA, and variable numbers of poorly characterised genes, are often found in patients with a wide range of developmental abnormalities. In such cases, understanding the contribution of the deletion to an individual's clinical phenotype is challenging. METHODS: Here, as an example of this common phenomenon, we analysed 41 patients with simple deletions of ~177 to ~2000 kb affecting one allele of the well-characterised, gene dense, distal region of chromosome 16 (16p13.3), referred to as ATR-16 syndrome. We characterised deletion extents and screened for genetic background effects, telomere position effect and compensatory upregulation of hemizygous genes. RESULTS: We find the risk of developmental and neurological abnormalities arises from much smaller distal chromosome 16 deletions (~400 kb) than previously reported. Beyond this, the severity of ATR-16 syndrome increases with deletion size, but there is no evidence that critical regions determine the developmental abnormalities associated with this disorder. Surprisingly, we find no evidence of telomere position effect or compensatory upregulation of hemizygous genes; however, genetic background effects substantially modify phenotypic abnormalities. CONCLUSIONS: Using ATR-16 as a general model of disorders caused by CNVs, we show the degree to which individuals with contiguous gene syndromes are affected is not simply related to the number of genes deleted but depends on their genetic background. We also show there is no critical region defining the degree of phenotypic abnormalities in ATR-16 syndrome and this has important implications for genetic counselling.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Variaciones en el Número de Copia de ADN/genética , Discapacidad Intelectual/genética , Monosomía/genética , Talasemia alfa/genética , Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Femenino , Eliminación de Gen , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Masculino , Monosomía/diagnóstico , Monosomía/patología , Fenotipo , Talasemia alfa/diagnóstico , Talasemia alfa/patología
14.
Development ; 144(7): 1249-1260, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28174238

RESUMEN

The T-box transcription factor (TF) Eomes is a key regulator of cell fate decisions during early mouse development. The cis-acting regulatory elements that direct expression in the anterior visceral endoderm (AVE), primitive streak (PS) and definitive endoderm (DE) have yet to be defined. Here, we identified three gene-proximal enhancer-like sequences (PSE_a, PSE_b and VPE) that faithfully activate tissue-specific expression in transgenic embryos. However, targeted deletion experiments demonstrate that PSE_a and PSE_b are dispensable, and only VPE is required for optimal Eomes expression in vivo Embryos lacking this enhancer display variably penetrant defects in anterior-posterior axis orientation and DE formation. Chromosome conformation capture experiments reveal VPE-promoter interactions in embryonic stem cells (ESCs), prior to gene activation. The locus resides in a large (500 kb) pre-formed compartment in ESCs and activation during DE differentiation occurs in the absence of 3D structural changes. ATAC-seq analysis reveals that VPE, PSE_a and four additional putative enhancers display increased chromatin accessibility in DE that is associated with Smad2/3 binding coincident with transcriptional activation. By contrast, activation of the Eomes target genes Foxa2 and Lhx1 is associated with higher order chromatin reorganisation. Thus, diverse regulatory mechanisms govern activation of lineage specifying TFs during early development.


Asunto(s)
Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas de Dominio T Box/genética , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Endodermo/metabolismo , Elementos de Facilitación Genéticos , Femenino , Factores de Transcripción Forkhead/metabolismo , Gastrulación/genética , Eliminación de Gen , Marcación de Gen , Genes Reporteros , Genotipo , Ratones Endogámicos C57BL , Modelos Biológicos , Proteínas del Grupo Polycomb/metabolismo , Transducción de Señal/genética , Proteína Smad2/metabolismo , Proteínas de Dominio T Box/metabolismo
15.
Nat Methods ; 14(2): 125-134, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139673

RESUMEN

Chromosome conformation capture (3C) methods are central to understanding the link between nuclear structure and function, and the physical interactions between distal regulatory elements and promoters. However, no one method is appropriate to address all biological questions, as each variant differs markedly in resolution, reproducibility, throughput and biases. A thorough appreciation of the strengths and weaknesses of each technique is critical when choosing the correct method for a specific application or for gauging how best to interpret different sources of data. In addition, the analysis method must be carefully considered, as this choice can profoundly affect the output. In this Review, we describe and compare the different available 3C-based approaches, with a focus on the analysis of mammalian genomes.


Asunto(s)
Cromosomas , Técnicas Genéticas , Animales , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , Cromosomas/química , Cromosomas/genética , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Hibridación Fluorescente in Situ , Células K562 , Ratones , Reacción en Cadena de la Polimerasa/métodos , Factores de Transcripción SOXB1/genética , Globinas alfa/genética
16.
IUBMB Life ; 72(1): 27-38, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769130

RESUMEN

Members of the GATA family of transcription factors play key roles in the differentiation of specific cell lineages by regulating the expression of target genes. Three GATA factors play distinct roles in hematopoietic differentiation. In order to better understand how these GATA factors function to regulate genes throughout the genome, we are studying the epigenomic and transcriptional landscapes of hematopoietic cells in a model-driven, integrative fashion. We have formed the collaborative multi-lab VISION project to conduct ValIdated Systematic IntegratiON of epigenomic data in mouse and human hematopoiesis. The epigenomic data included nuclease accessibility in chromatin, CTCF occupancy, and histone H3 modifications for 20 cell types covering hematopoietic stem cells, multilineage progenitor cells, and mature cells across the blood cell lineages of mouse. The analysis used the Integrative and Discriminative Epigenome Annotation System (IDEAS), which learns all common combinations of features (epigenetic states) simultaneously in two dimensions-along chromosomes and across cell types. The result is a segmentation that effectively paints the regulatory landscape in readily interpretable views, revealing constitutively active or silent loci as well as the loci specifically induced or repressed in each stage and lineage. Nuclease accessible DNA segments in active chromatin states were designated candidate cis-regulatory elements in each cell type, providing one of the most comprehensive registries of candidate hematopoietic regulatory elements to date. Applications of VISION resources are illustrated for the regulation of genes encoding GATA1, GATA2, GATA3, and Ikaros. VISION resources are freely available from our website http://usevision.org.


Asunto(s)
Cromatina/metabolismo , Epigenoma , Factores de Transcripción GATA/metabolismo , Regulación de la Expresión Génica , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Diferenciación Celular , Cromatina/genética , Factores de Transcripción GATA/genética , Humanos
17.
Mol Cell ; 45(4): 447-58, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22264824

RESUMEN

A substantial amount of organismal complexity is thought to be encoded by enhancers which specify the location, timing, and levels of gene expression. In mammals there are more enhancers than promoters which are distributed both between and within genes. Here we show that activated, intragenic enhancers frequently act as alternative tissue-specific promoters producing a class of abundant, spliced, multiexonic poly(A)(+) RNAs (meRNAs) which reflect the host gene's structure. meRNAs make a substantial and unanticipated contribution to the complexity of the transcriptome, appearing as alternative isoforms of the host gene. The low protein-coding potential of meRNAs suggests that many meRNAs may be byproducts of enhancer activation or underlie as-yet-unidentified RNA-encoded functions. Distinguishing between meRNAs and mRNAs will transform our interpretation of dynamic changes in transcription both at the level of individual genes and of the genome as a whole.


Asunto(s)
Elementos de Facilitación Genéticos/fisiología , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/fisiología , Animales , Células Cultivadas , Células Eritroides , Ratones , Poli A , ARN/química , ARN/fisiología , Isoformas de ARN/química , ARN Mensajero/química , ARN Mensajero/fisiología , Transcriptoma
18.
Proc Natl Acad Sci U S A ; 114(36): E7526-E7535, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827334

RESUMEN

The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.


Asunto(s)
Diferenciación Celular/genética , Islas de CpG/genética , Metilación de ADN/genética , Transcripción Genética/genética , Animales , Línea Celular , Epigénesis Genética/genética , Genoma Humano/genética , Humanos , Ratones , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ADN/métodos
19.
Hum Mol Genet ; 26(R2): R208-R215, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28977451

RESUMEN

It has been known for over a century that chromatin is not randomly distributed within the nucleus. However, the question of how DNA is folded and the influence of such folding on nuclear processes remain topics of intensive current research. A longstanding, unanswered question is whether nuclear organization is simply a reflection of nuclear processes such as transcription and replication, or whether chromatin is folded by independent mechanisms and this per se encodes function? Evidence is emerging that both may be true. Here, using the α-globin gene cluster as an illustrative model, we provide an overview of the most recent insights into the layers of genome organization across different scales and how this relates to gene activity.


Asunto(s)
Componentes Genómicos/genética , Genoma/genética , Genoma/fisiología , Animales , Núcleo Celular/genética , Núcleo Celular/fisiología , Cromatina/genética , Cromatina/fisiología , ADN/genética , Replicación del ADN/genética , Humanos , Familia de Multigenes/genética , Conformación de Ácido Nucleico , Transcripción Genética/genética , Transcripción Genética/fisiología , Globinas alfa/genética
20.
Nat Methods ; 13(1): 74-80, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595209

RESUMEN

Methods for analyzing chromosome conformation in mammalian cells are either low resolution or low throughput and are technically challenging. In next-generation (NG) Capture-C, we have redesigned the Capture-C method to achieve unprecedented levels of sensitivity and reproducibility. NG Capture-C can be used to analyze many genetic loci and samples simultaneously. High-resolution data can be produced with as few as 100,000 cells, and single-nucleotide polymorphisms can be used to generate allele-specific tracks. The method is straightforward to perform and should greatly facilitate the investigation of many questions related to gene regulation as well as the functional dissection of traits examined in genome-wide association studies.


Asunto(s)
Cromosomas Humanos , Humanos , Polimorfismo de Nucleótido Simple , Secuencias Reguladoras de Ácidos Nucleicos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA