Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35684585

RESUMEN

The authors would like to correct an error made through no fault of their own in the title paper [...].

2.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065900

RESUMEN

Within the last decades cancer treatment improved by the availability of more specifically acting drugs that address molecular target structures in cancer cells. However, those target-sensitive drugs suffer from ongoing resistances resulting from mutations and moreover they are affected by the cancer phenomenon of multidrug resistance. A multidrug resistant cancer can hardly be treated with the common drugs, so that there have been long efforts to develop drugs to combat that resistance. Transmembrane efflux pumps are the main cause of the multidrug resistance in cancer. Early inhibitors disappointed in cancer treatment without a proof of expression of a respective efflux pump. Recent studies in efflux pump expressing cancer show convincing effects of those inhibitors. Based on the molecular symmetry of the efflux pump multidrug resistant protein (MRP) 4 we synthesized symmetric inhibitors with varied substitution patterns. They were evaluated in a MRP4-overexpressing cancer cell line model to prove structure-dependent effects on the inhibition of the efflux pump activity in an uptake assay of a fluorescent MRP4 substrate. The most active compound was tested to resentisize the MRP4-overexpressing cell line towards a clinically relevant anticancer drug as proof-of-principle to encourage for further preclinical studies.


Asunto(s)
Antineoplásicos/farmacología , Dihidropiridinas/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Neoplasias Pancreáticas/genética , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dihidropiridinas/síntesis química , Dihidropiridinas/química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Neoplasias Pancreáticas/tratamiento farmacológico , Relación Estructura-Actividad , Regulación hacia Arriba/efectos de los fármacos
3.
Molecules ; 27(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35011293

RESUMEN

Ongoing resistance developments against antibiotics that also affect last-resort antibiotics require novel antibacterial compounds. Strategies to discover such novel structures have been dimerization or hybridization of known antibacterial agents. We found novel antibacterial agents by dimerization of indols and hybridization with carbazoles. They were obtained in a simple one-pot reaction as bisindole tetrahydrocarbazoles. Further oxidation led to bisindole carbazoles with varied substitutions of both the indole and the carbazole scaffold. Both the tetrahydrocarbazoles and the carbazoles have been evaluated in various S. aureus strains, including MRSA strains. Those 5-cyano substituted derivatives showed best activities as determined by MIC values. The tetrahydrocarbazoles partly exceed the activity of the carbazole compounds and thus the activity of the used standard antibiotics. Thus, promising lead compounds could be identified for further studies.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/síntesis química , Carbazoles/química , Técnicas de Química Sintética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Análisis Espectral , Relación Estructura-Actividad
4.
Molecules ; 26(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375210

RESUMEN

Despite the development of targeted therapies in cancer, the problem of multidrug resistance (MDR) is still unsolved. Most patients with metastatic cancer die from MDR. Transmembrane efflux pumps as the main cause of MDR have been addressed by developed inhibitors, but early inhibitors of the most prominent and longest known efflux pump P-glycoprotein (P-gp) were disappointing. Those inhibitors have been used without knowledge about the expression of P-gp by the treated tumor. Therefore the use of inhibitors of transmembrane efflux pumps in clinical settings is reconsidered as a promising strategy in the case of the respective efflux pump expression. We discovered novel symmetric inhibitors of the symmetric efflux pump MRP4 encoded by the ABCC4 gene. MRP4 is involved in many kinds of cancer with resistance to anticancer drugs. All compounds showed better activities than the best known MRP4 inhibitor MK571 in an MRP4-overexpressing cell line assay, and the activities could be related to the various substitution patterns of aromatic residues within the symmetric molecular framework. One of the best compounds was demonstrated to overcome the MRP4-mediated resistance in the cell line model to restore the anticancer drug sensitivity as a proof of concept.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Dihidropiridinas/química , Dihidropiridinas/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Línea Celular Tumoral , Descubrimiento de Drogas/métodos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Espectroscopía de Resonancia Magnética
5.
Molecules ; 24(16)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398786

RESUMEN

The number of effective antituberculotic drugs is strongly limited to four first-line drugs in standard therapy. In case of resistances second-line antibiotics are used with a poor efficacy and tolerability. Therefore, novel antituberculotic drugs are urgently needed. We synthesized novel nonclassical 1,4-dihydropyridines and evaluated their antituberculotic properties depending on substituent effects. Preferred substituents could be identified. As related classical 1,4-dihydropyridines are known as inhibitors of the transmembrane efflux pump ABCB1 in cancer cells, we wondered whether a use of our compounds may be of favour to enhance the antituberculotic drug efficacy of the second-line antituberculotic drug clofazimine, which is a known substrate of ABCB1 by a suggested inhibition of a corresponding efflux pump in Mycobacterium tuberculosis (Mtb). For this, we determined the ABCB1 inhibiting properties of our compounds in a mouse T-lymphoma cell line model and then evaluated the drug-enhancing properties of selected compounds in a co-application with clofazimine in our Mtb strain. We identified novel enhancers of clofazimine toxicity which could prevent clofazimine resistance development mediated by an efflux pump activity.


Asunto(s)
Antituberculosos/farmacología , Clofazimina/farmacología , Dihidropiridinas/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Antituberculosos/química , Clofazimina/química , Dihidropiridinas/síntesis química , Dihidropiridinas/química , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Análisis Espectral
6.
J Enzyme Inhib Med Chem ; 33(1): 1-8, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29098884

RESUMEN

With ongoing resistance problems against the marketed EGFR inhibitors having a quinazoline core scaffold there is a need for the development of novel inhibitors having a modified scaffold and, thus, expected lower EGFR resistance problems. An additional problem concerning EGFR inhibitor resistance is an observed heterodimerization of EGFR with PDGFR-ß that neutralises the sole inhibitor activity towards EGFR. We developed novel pyrimido[4,5-b]indoles with varied substitution patterns at the 4-anilino residue to evaluate their EGFR and PDGFR-ß inhibiting properties. We identified dual inhibitors of both EGFR and PDGFR-ß in the nanomolar range which have been initially screened in cancer cell lines to prove a benefit of both EGFR and PDGFR-ß inhibition.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Receptores ErbB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Relación Estructura-Actividad
7.
Molecules ; 23(4)2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29617279

RESUMEN

The number of effective first-line antibiotics for the treatment of Mycobacterium tuberculosis infection is strongly limited to a few drugs. Due to emerging resistance against those drugs, second- and third-line antibiotics have been established in therapy with certain problems and also increasing mycobacterial resistance. An alternative to such novel drugs or combined therapeutic regimes which may reduce resistance development is finding enhancers of mycobacterial drug effectiveness, especially enhancers that counteract causative resistance mechanisms. Such enhancers may reduce the extracellular drug efflux mediated by bacterial efflux pumps and thus enhance the intracellular drug toxicity. We developed novel 1,4-dihydropyridines (DHPs) as potential efflux pump inhibitors with some determined P-gp affinities. The influence on the antituberculotic drug toxicity has been investigated for three prominent antituberculotic drugs. Exclusive and selective toxicity enhancing effects have been detected for isoniazid (INH) which could be related to certain substituent effects of the 1,4-DHPs. So, structure-dependent activities have been found. Thus, promising enhancers could be identified and a suggested efflux pump inhibition is discussed.


Asunto(s)
Antituberculosos/farmacología , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dihidropiridinas/química , Dihidropiridinas/farmacología , Isoniazida/química , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Relación Estructura-Actividad
8.
Molecules ; 23(9)2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213139

RESUMEN

The current number of drugs available for the treatment of Alzheimer's disease (AD) is strongly limited and their benefit for therapy is given only in the early state of the disease. An effective therapy should affect those processes which mainly contribute to the neuronal decay. There have been many approaches for a reduction of toxic Aß peptides which mostly failed to halt cognitive deterioration in patients. The formation of neurofibrillary tangles (NFT) and its precursor tau oligomers have been suggested as main cause of neuronal degeneration because of a direct correlation of their density to the degree of dementia. Reducing of tau aggregation may be a viable approach for the treatment of AD. NFT consist of hyperphosphorylated tau protein and tau hyperphosphorylation reduces microtubule binding. Several protein kinases are discussed to be involved in tau hyperphosphorylation. We developed novel inhibitors of three protein kinases (gsk-3ß, cdk5, and cdk1) and discussed their activity in relation to tau phosphorylation and on tau⁻tau interaction as a nucleation stage of a tau aggregation in cells. Strongest effects were observed for those inhibitors with effects on all the three kinases with emphasis on gsk-3ß in nanomolar ranges.


Asunto(s)
Benzofuranos/síntesis química , Inhibidores de Proteínas Quinasas/síntesis química , Piridinas/síntesis química , Proteínas tau/metabolismo , Animales , Benzofuranos/química , Benzofuranos/farmacología , Proteína Quinasa CDC2/metabolismo , Células COS , Línea Celular , Chlorocebus aethiops , Quinasa 4 Dependiente de la Ciclina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/química , Piridinas/farmacología , Células Sf9 , Proteínas tau/química
9.
Bioorg Med Chem Lett ; 27(12): 2708-2712, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28478927

RESUMEN

The quinazoline scaffold is the main part of many marketed EGFR inhibitors. Resistance developments against those inhibitors enforced the search for novel structural lead compounds. We developed novel benzo-anellated 4-benzylamine pyrrolopyrimidines with varied substitution patterns at both the molecular scaffold and the attached residue in the 4-position. The structure-dependent affinities towards EGFR are discussed and first nanomolar derivatives have been identified. Docking studies were carried out for EGFR in order to explore the potential binding mode of the novel inhibitors. As the receptor tyrosine kinase VEGFR2 recently gained an increasing interest as an upregulated signaling kinase in many solid tumors and in tumor metastasis we determined the affinity of our compounds to inhibit VEGFR2. So we identified novel dually acting EGFR and VEGFR2 inhibitors for which first anticancer screening data are reported. Those data indicate a stronger antiproliferative effect of a VEGFR2 inhibition compared to the EGFR inhibition.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Receptores ErbB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Pirroles/síntesis química , Pirroles/química , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
J Enzyme Inhib Med Chem ; 32(1): 271-276, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28097905

RESUMEN

Novel 4-benzylamino benzo-anellated pyrrolo[2,3-b]pyridines have been synthesized with varied substitution patterns both at the molecular scaffold of the benzo-anellated ring and at the 4-benzylamino residue. With a structural similarity to substituted thieno[2,3-d]pyrimidines as epidermal growth factor receptor (EGFR) inhibitors, we characterized the inhibition of EGFR for our novel compounds. As receptor heterodimerization gained certain interest as mechanism of cancer cells to become resistant against novel protein kinase inhibitors, we additionally measured the inhibition of insulin-like growth factor receptor IGF-1R which is a prominent receptor for such heterodimerizations with EGFR. Structure-activity relationships are discussed for both kinase inhibitions depending on the varied substitution patterns. We discovered novel dual inhibitors of both receptor tyrosine kinases with interest for further studies to reduce inhibitor resistance developments in cancer treatment.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptor IGF Tipo 1/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Infrarroja
11.
Molecules ; 22(12)2017 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-29232858

RESUMEN

Enterococcus species cause increasing numbers of infections in hospitals. They contribute to the increasing mortality rates, mostly in patients with comorbidities, who suffer from severe diseases. Enterococcus resistances against most antibiotics have been described, including novel antibiotics. Therefore, there is an ongoing demand for novel types of antibiotics that may overcome bacterial resistances. We discovered a novel class of antibiotics resulting from a simple one-pot reaction of indole and o-phthaldialdehyde. Differently substituted indolyl benzocarbazoles were yielded. Both the indole substitution and the positioning at the molecular scaffold influence the antibacterial activity towards the various strains of Enterococcus species with the highest relevance to nosocomial infections. Structure-activity relationships are discussed, and the first lead compounds were identified as also being effective in the case of a vancomycin resistance.


Asunto(s)
Antibacterianos/síntesis química , Enterococcus/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Indoles/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Resistencia a la Vancomicina/efectos de los fármacos , o-Ftalaldehído/química
12.
Bioorg Med Chem Lett ; 26(24): 5896-5898, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27866817

RESUMEN

There is an urgent need for novel drugs for the treatment of tuberculosis (TB) due to the increasing prevalence of antibiotic resistance among Mycobacterium tuberculosis (Mtb) strains against first-line and second-line therapeutics. We developed novel N-phenyl 1,4-dihydropyridines as potential antituberculotic agents. The observed activity depends on the substitution patterns of the aromatic residues. N-unsubstituted 1,4-dihydropyridines are known inhibitors of the cancer-relevant transmembrane efflux pump ABCB1. Based on the similarity of ABCB1 amino acids sequences relevant to 1,4-dihydropyridine binding and the MTb efflux pump Rv0194, we determined ABCB1-inhibitory properties of our compounds in a cell line model. We identified one compound, which substantially increased the activity of two antituberculotic drugs which are substrates of ABCB1. The data indicate that our N-phenyl 1,4-dihydropyridines represent a novel compound class which improves the efficacy of anti-TB drugs by interfering with transmembrane efflux pumps in Mtb.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Mycobacterium tuberculosis/efectos de los fármacos , Niacina/análogos & derivados , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Niacina/síntesis química , Niacina/química , Niacina/farmacología , Relación Estructura-Actividad
13.
Bioorg Med Chem Lett ; 26(1): 218-21, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26590101

RESUMEN

Antibiotic resistance is an ongoing problem in the treatment of bacterial diseases. Among the various antibacterial infections Staphylococcus aureus infections remain critical due to the increasing resistances, especially against the methicillin-resistant S. aureus (MRSA). We discovered novel antibacterial compounds with activities against both S. aureus and MRSA types. Structure-activity relationships (SAR) are discussed and show that the activity depends on the ring size of the anellated cycloalkane. Moreover, first substituent effects have been investigated for both the cycloalkane and the indole residues.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Cicloparafinas/química , Descubrimiento de Drogas , Indoles/química , Indoles/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Relación Dosis-Respuesta a Droga , Indoles/síntesis química , Estructura Molecular , Relación Estructura-Actividad
14.
J Enzyme Inhib Med Chem ; 31(6): 1666-71, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26653005

RESUMEN

Novel bisindolyl-cycloalkane indoles resulted from the reaction of aliphatic dialdehydes and indole. As bisindolyl-natural alkaloid compounds have recently been reported as inhibitors of the methicillin-resistant Staphylococcus aureus (MRSA)-pyruvate kinase (PK), we tested our novel compounds as MRSA PK inhibitors and now report first inhibiting activities. We discuss structure-activity relationships of structurally varied compounds. Activity influencing substituents have been characterized and relations to antibacterial activities of the most active compounds have been proved.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Staphylococcus aureus Resistente a Meticilina/enzimología , Piruvato Quinasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Análisis Espectral/métodos
15.
Bioorg Med Chem Lett ; 25(15): 3005-8, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26048803

RESUMEN

Multidrug resistance (mdr) is the most important problem in the therapeutical treatment of cancer. One central problem in the resistance proceeding is the expression of transmembrane efflux pumps which transport drugs out of the cells. We developed novel substituted 1,4-dihydroquinolines as inhibitors of the transmembrane efflux pump P-glycoprotein. Structure-activity relationships are discussed for this first series. Promising active inhibitors have been identified and first bioanalytical studies have been carried out to address questions of cellular toxicity, P-gp substrate as well as mdr reversal properties.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Quinolinas/química , Quinolinas/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Relación Estructura-Actividad
16.
Bioorg Med Chem ; 23(15): 5015-5021, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26059595

RESUMEN

Transmembrane efflux pumps are one main cause for multidrug resistance (mdr) of cancer. One hopeful approach to combate the mdr has been the development of inhibitors of the efflux pump activity. A novel class of small-molecule inhibitors of the most important efflux pump ABCB1 (P-glycoprotein) has been discovered. Inhibitory activities are discussed in relation to substituent effects. Most active compounds have been evaluated in first bioanalytical studies to reverse the mdr of an anticancer drug. Cellular toxicity and ABCB1 substrate properties of the compounds were investigated. A cellular induction of relevant efflux pump protein expressions was not observed under inhibitor application, so that our compounds are perspective candidates for further preclinical studies.


Asunto(s)
Antineoplásicos/síntesis química , Quinolinas/química , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos , Humanos , Quinolinas/síntesis química , Quinolinas/farmacología , Relación Estructura-Actividad , Especificidad por Sustrato
17.
Bioorg Med Chem Lett ; 24(8): 1948-51, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24650640

RESUMEN

Dysregulation of cell signalling processes caused by an enhanced activity of protein kinases mainly contributes to cancer progression. Protein kinase inhibitors have been established as promising drugs that inhibit such overactive protein kinases in cancer cells. The formation of metastases, which makes a therapy difficult, remains a great challenge for cancer treatment. Recently, breast tumor kinase (Brk) was discovered as novel and interesting target for a cancer therapy because Brk participates in both cell dysregulation and metastasis. We discovered 4-anilino substituted α-carboline compounds as a novel class of highly active Brk inhibitors. In the current work, structure-activity relationships are discussed including docking results obtained for 4-anilino α-carbolines. A first profiling of selective kinase inhibition and a proof of concept for the antiproliferative effects is demonstrated. These results qualify the compounds as a promising class of novel antitumor agents.


Asunto(s)
Carbolinas/síntesis química , Carbolinas/farmacología , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Compuestos de Anilina/síntesis química , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Carbolinas/química , Activación Enzimática/efectos de los fármacos , Humanos
18.
Artículo en Inglés | MEDLINE | ID: mdl-38706362

RESUMEN

BACKGROUND: Multidrug resistance (MDR) is the main problem in anticancer therapy today. Causative transmembrane efflux pumps in cancer cells have been reconsidered as promising anticancer target structures to restore anticancer drug sensitivity by various strategies, including MDR modulators. MDR modulators interfere with the efflux pumps and improve the cellular efficiency of chemotherapeutics. So far, only a few candidates have gone through clinical trials with disappointing results because of low specificity and toxic properties. AIM: This study aimed to find Novel MDR modulators to effectively combat multidrug resistance in cancer cells. OBJECTIVE: We synthesized various novel benzo-annelated 1,4-dihydropyridines to evaluate them as MDR modulators towards ABCB1 in cancer cells. METHODS: Synthesized compounds were purified by column chromatography. The MDR modulation of ABCB1 was determined in cellular efflux assays using the flow cytometry technique and cellular fluorescent measurements by the use of each fluorescent substrate. RESULTS: Compounds were yielded in a two-step reaction with structurally varied components. Further, substituent- dependent effects on the determined MDR inhibiting properties towards ABCB1 were discussed. Cellular studies prove that there is no toxicity or restoration of cancer cell sensitivity towards the used anticancer drug. CONCLUSION: Novel MDR modulators could be identified with favorable methoxy and ester group functions. Their use in both ABCB1 non-expressing and overexpressing cells proves a selective toxicity-increasing effect of the applied anticancer agent in the ABCB1 overexpressing cells, whereas the toxicity effect of the anticancer drug was almost unchanged in the non-expressing cells. These results qualify our novel compounds as perspective anticancer drugs compared to MDR modulators with nonselective toxicity properties.

19.
Med Chem ; 20(1): 30-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37349995

RESUMEN

BACKGROUND: Tuberculosis has been the main cause of mortality of infectious diseases worldwide, with strongly limited therapeutic options. With increasing resistance and missing suitable drugs in those cases, there is a strong need for novel antituberculostatic drugs. We developed novel N-aryl 1,4-dihydropyridines with various substitution patterns to evaluate them as antituberculostatic agents. METHODS: 1,4-Dihydropyridine derivatives were synthesized and purified by column chromatography or recrystallization. The mycobacterial growth inhibition was determined in a fluorescent mycobacterial growth assay. RESULTS: The compounds were prepared in a simple one-pot reaction under acidic conditions with structurally varied components. The substituent effects on the determined mycobacterial growth inhibitory properties are discussed. CONCLUSION: Lipophilic diester substituted derivatives show promising activities that were additionally affected by the aromatic substituent functions. Thus, we identified compounds with activities almost reaching that of the used antimycobacterial drug as control.


Asunto(s)
Dihidropiridinas , Mycobacterium tuberculosis , Antituberculosos , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana
20.
Med Chem ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38726790

RESUMEN

BACKGROUND: The increasing antibacterial drug resistance remains a threat to global health with increasing mortality and morbidity. There is an urgent need to find novel antibacterials and develop alternative strategies to combat the increasing antibacterial drug resistance.

Objective: We aimed to synthesize novel small-molecule antibacterials to evaluate the structuredependent antibacterial compound activities against S. aureus and MRSA.

Method: Compounds were synthesized by primary N-alkylation to form alkyl acridinium salts that were further functionalized with substituted phenyl residues and finally purified by column chromatography. The antibacterial growth inhibition activity was determined as MIC value.

Results: The substituent effects on the determined antibacterial growth inhibitory properties have been discussed.

Conclusion: The best activities have been found for compounds with methoxy functions, exceeding the activities of reported novel antibacterial peptides. The compounds have also shown antibacterial drug-enhancing effects, which have been manifested as a reduction in the MIC values of the used antibiotics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA