Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(19): e2301047120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126705

RESUMEN

The mitochondrial electron transport chain (ETC) of Plasmodium malaria parasites is a major antimalarial drug target, but critical cytochrome (cyt) functions remain unstudied and enigmatic. Parasites express two distinct cyt c homologs (c and c-2) with unusually sparse sequence identity and uncertain fitness contributions. P. falciparum cyt c-2 is the most divergent eukaryotic cyt c homolog currently known and has sequence features predicted to be incompatible with canonical ETC function. We tagged both cyt c homologs and the related cyt c1 for inducible knockdown. Translational repression of cyt c and cyt c1 was lethal to parasites, which died from ETC dysfunction and impaired ubiquinone recycling. In contrast, cyt c-2 knockdown or knockout had little impact on blood-stage growth, indicating that parasites rely fully on the more conserved cyt c for ETC function. Biochemical and structural studies revealed that both cyt c and c-2 are hemylated by holocytochrome c synthase, but UV-vis absorbance and EPR spectra strongly suggest that cyt c-2 has an unusually open active site in which heme is stably coordinated by only a single axial amino acid ligand and can bind exogenous small molecules. These studies provide a direct dissection of cytochrome functions in the ETC of malaria parasites and identify a highly divergent Plasmodium cytochrome c with molecular adaptations that defy a conserved role in eukaryotic evolution.


Asunto(s)
Antimaláricos , Malaria Falciparum , Parásitos , Animales , Citocromos c , Transporte de Electrón , Eucariontes , Citocromos c1
2.
Mol Cell ; 68(4): 673-685.e6, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149595

RESUMEN

Vms1 translocates to damaged mitochondria in response to stress, whereupon its binding partner, Cdc48, contributes to mitochondrial protein homeostasis. Mitochondrial targeting of Vms1 is mediated by its conserved mitochondrial targeting domain (MTD), which, in unstressed conditions, is inhibited by intramolecular binding to the Vms1 leucine-rich sequence (LRS). Here, we report a 2.7 Å crystal structure of Vms1 that reveals that the LRS lies in a hydrophobic groove in the autoinhibited MTD. We also demonstrate that the oxidized sterol, ergosterol peroxide, is necessary and sufficient for Vms1 localization to mitochondria, through binding the MTD in an interaction that is competitive with binding to the LRS. These data support a model in which stressed mitochondria generate an oxidized sterol receptor that recruits Vms1 to support mitochondrial protein homeostasis.


Asunto(s)
Ergosterol/análogos & derivados , Mitocondrias , Transporte de Proteínas , Saccharomyces cerevisiae , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Ergosterol/metabolismo , Mitocondrias/química , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidación-Reducción , Dominios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nat Chem Biol ; 18(5): 511-519, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35289328

RESUMEN

Cone snail venoms contain a wide variety of bioactive peptides, including insulin-like molecules with distinct structural features, binding modes and biochemical properties. Here, we report an active humanized cone snail venom insulin with an elongated A chain and a truncated B chain, and use cryo-electron microscopy (cryo-EM) and protein engineering to elucidate its interactions with the human insulin receptor (IR) ectodomain. We reveal how an extended A chain can compensate for deletion of B-chain residues, which are essential for activity of human insulin but also compromise therapeutic utility by delaying dissolution from the site of subcutaneous injection. This finding suggests approaches to developing improved therapeutic insulins. Curiously, the receptor displays a continuum of conformations from the symmetric state to a highly asymmetric low-abundance structure that displays coordination of a single humanized venom insulin using elements from both of the previously characterized site 1 and site 2 interactions.


Asunto(s)
Insulina , Venenos de Moluscos , Microscopía por Crioelectrón , Humanos , Insulina/metabolismo , Venenos de Moluscos/química , Venenos de Moluscos/metabolismo , Péptidos , Conformación Proteica
4.
Cell ; 137(7): 1282-92, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19523676

RESUMEN

The mature capsids of HIV and other retroviruses organize and package the viral genome and its associated enzymes for delivery into host cells. The HIV capsid is a fullerene cone: a variably curved, closed shell composed of approximately 250 hexamers and exactly 12 pentamers of the viral CA protein. We devised methods for isolating soluble, assembly-competent CA hexamers and derived four crystallographically independent models that define the structure of this capsid assembly unit at atomic resolution. A ring of six CA N-terminal domains form an apparently rigid core, surrounded by an outer ring of C-terminal domains. Mobility of the outer ring appears to be an underlying mechanism for generating the variably curved lattice in authentic capsids. Hexamer-stabilizing interfaces are highly hydrated, and this property may be key to the formation of quasi-equivalent interactions within hexamers and pentamers. The structures also clarify the molecular basis for capsid assembly inhibition and should facilitate structure-based drug design strategies.


Asunto(s)
Proteínas de la Cápside/química , VIH-1/química , Proteínas de la Cápside/metabolismo , Cristalografía por Rayos X , VIH-1/metabolismo , Modelos Moleculares , Polímeros/metabolismo , Estructura Terciaria de Proteína
5.
Nucleic Acids Res ; 50(2): 784-802, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34967414

RESUMEN

The conserved transcription elongation factor Spt6 makes several contacts with the RNA Polymerase II (RNAPII) complex, including a high-affinity interaction between the Spt6 tandem SH2 domain (Spt6-tSH2) and phosphorylated residues of the Rpb1 subunit in the linker between the catalytic core and the C-terminal domain (CTD) heptad repeats. This interaction contributes to generic localization of Spt6, but we show here that it also has gene-specific roles. Disrupting the interface affected transcription start site selection at a subset of genes whose expression is regulated by this choice, and this was accompanied by changes in a distinct pattern of Spt6 accumulation at these sites. Splicing efficiency was also diminished, as was apparent progression through introns that encode snoRNAs. Chromatin-mediated repression was impaired, and a distinct role in maintaining +1 nucleosomes was identified, especially at ribosomal protein genes. The Spt6-tSH2:Rpb1 interface therefore has both genome-wide functions and local roles at subsets of genes where dynamic decisions regarding initiation, transcript processing, or termination are made. We propose that the interaction modulates the availability or activity of the core elongation and histone chaperone functions of Spt6, contributing to coordination between RNAPII and its accessory factors as varying local conditions call for dynamic responses.


Asunto(s)
Chaperonas de Histonas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/metabolismo , Dominios Homologos src , Sitios de Unión , Regulación de la Expresión Génica , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Humanos , IMP Deshidrogenasa/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , ARN Polimerasa II/química , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Sitio de Iniciación de la Transcripción , Transcripción Genética , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética
6.
Mol Cell ; 60(2): 294-306, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26455391

RESUMEN

FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/metabolismo , Nucleosomas/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo , Secuencias de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/genética , Histonas/química , Histonas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética
7.
Mol Cell ; 57(5): 901-911, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25702872

RESUMEN

The UCH37 deubiquitylase functions in two large and very different complexes, the 26S proteasome and the INO80 chromatin remodeler. We have performed biochemical characterization and determined crystal structures of UCH37 in complexes with RPN13 and NFRKB, which mediate its recruitment to the proteasome and INO80, respectively. RPN13 and NFRKB make similar contacts to the UCH37 C-terminal domain but quite different contacts to the catalytic UCH domain. RPN13 can activate UCH37 by disrupting dimerization, although physiologically relevant activation likely results from stabilization of a surface competent for ubiquitin binding and modulation of the active-site crossover loop. In contrast, NFRKB inhibits UCH37 by blocking the ubiquitin-binding site and by disrupting the enzyme active site. These findings reveal remarkable commonality in mechanisms of recruitment, yet very different mechanisms of regulating enzyme activity, and provide a foundation for understanding the roles of UCH37 in the unrelated proteasome and INO80 complexes.


Asunto(s)
Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ubiquitina Tiolesterasa/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Multimerización de Proteína , Homología de Secuencia de Aminoácido , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
8.
J Biol Chem ; 295(2): 435-443, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767681

RESUMEN

Many members of the AAA+ ATPase family function as hexamers that unfold their protein substrates. These AAA unfoldases include spastin, which plays a critical role in the architecture of eukaryotic cells by driving the remodeling and severing of microtubules, which are cytoskeletal polymers of tubulin subunits. Here, we demonstrate that a human spastin binds weakly to unmodified peptides from the C-terminal segment of human tubulin α1A/B. A peptide comprising alternating glutamate and tyrosine residues binds more tightly, which is consistent with the known importance of glutamylation for spastin microtubule severing activity. A cryo-EM structure of the spastin-peptide complex at 4.2 Å resolution revealed an asymmetric hexamer in which five spastin subunits adopt a helical, spiral staircase configuration that binds the peptide within the central pore, whereas the sixth subunit of the hexamer is displaced from the peptide/substrate, as if transitioning from one end of the helix to the other. This configuration differs from a recently published structure of spastin from Drosophila melanogaster, which forms a six-subunit spiral without a transitioning subunit. Our structure resembles other recently reported AAA unfoldases, including the meiotic clade relative Vps4, and supports a model in which spastin utilizes a hand-over-hand mechanism of tubulin translocation and microtubule remodeling.


Asunto(s)
Espastina/metabolismo , Tubulina (Proteína)/metabolismo , Sitios de Unión , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Espastina/química , Tubulina (Proteína)/química
9.
J Am Chem Soc ; 143(29): 10910-10919, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34255504

RESUMEN

As the only ribosomally encoded N-substituted amino acid, proline promotes distinct secondary protein structures. The high proline content in collagen, the most abundant protein in the human body, is crucial to forming its hallmark structure: the triple-helix. For over five decades, proline has been considered compulsory for synthetic designs aimed at recapitulating collagen's structure and properties. Here we describe that N-substituted glycines (N-glys), also known as peptoid residues, exhibit a general triple-helical propensity similar to or greater than proline, enabling synthesis of stable triple-helical collagen mimetic peptides (CMPs) with unprecedented side chain diversity. Supported by atomic-resolution crystal structures as well as circular dichroism and computational characterizations spanning over 30 N-gly-containing CMPs, we discovered that N-glys stabilize the triple-helix primarily by sterically preorganizing individual chains into the polyproline-II helix. We demonstrated that N-glys with exotic side chains including a "click"-able alkyne and a photosensitive side chain enable CMPs for functional applications including the spatiotemporal control of cell adhesion and migration. The structural principles uncovered in this study open up opportunities for a new generation of collagen-mimetic therapeutics and materials.


Asunto(s)
Colágeno/síntesis química , Glicina/química , Péptidos/síntesis química , Colágeno/química , Estructura Molecular , Péptidos/química
10.
J Biol Chem ; 294(25): 9659-9665, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31064842

RESUMEN

Protein substrates are targeted to the 26S proteasome through several ubiquitin receptors. One of these receptors, RPN13, is recruited to the proteasome by binding of its N-terminal pleckstrin-like receptor of ubiquitin (PRU) domain to C-terminal residues of the scaffolding protein RPN2. The RPN13 PRU domain is followed by a flexible linker and a C-terminal deubiquitylase adaptor (DEUBAD) domain, which recruits and activates the deubiquitylase UCH37. Both RPN13 and UCH37 have been implicated in human cancers, and inhibitors of the RPN2-RPN13 interaction are being developed as potential therapeutic anticancer agents. Our current study builds on the recognition that a residue central to the RPN2-RPN13 interaction, RPN2 Tyr-950, is phosphorylated in Jurkat cells. We found that the Tyr-950 phosphorylation enhances binding to RPN13. The crystal structure of the RPN2-RPN13 pTyr-950-ubiquitin complex was determined at 1.76-Å resolution and reveals specific interactions with positively charged side chains in RPN13 that explain how phosphorylation increases binding affinity without inducing conformational change. Mutagenesis and quantitative binding assays were then used to validate the crystallographic interface. Our findings support a model in which RPN13 recruitment to the proteasome is enhanced by phosphorylation of RPN2 Tyr-950, have important implications for efforts to develop specific inhibitors of the RPN2-RPN13 interaction, and suggest the existence of a previously unknown stress-response pathway.


Asunto(s)
Hexosiltransferasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Tirosina/química , Ubiquitina/metabolismo , Cristalografía por Rayos X , Hexosiltransferasas/química , Hexosiltransferasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Mutación , Fosforilación , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Conformación Proteica
11.
Retrovirology ; 16(1): 28, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640718

RESUMEN

BACKGROUND: PIE12-trimer is a highly potent D-peptide HIV-1 entry inhibitor that broadly targets group M isolates. It specifically binds the three identical conserved hydrophobic pockets at the base of the gp41 N-trimer with sub-femtomolar affinity. This extremely high affinity for the transiently exposed gp41 trimer provides a reserve of binding energy (resistance capacitor) to prevent the viral resistance pathway of stepwise accumulation of modest affinity-disrupting mutations. Such modest mutations would not affect PIE12-trimer potency and therefore not confer a selective advantage. Viral passaging in the presence of escalating PIE12-trimer concentrations ultimately selected for PIE12-trimer resistant populations, but required an extremely extended timeframe (> 1 year) in comparison to other entry inhibitors. Eventually, HIV developed resistance to PIE12-trimer by mutating Q577 in the gp41 pocket. RESULTS: Using deep sequence analysis, we identified three mutations at Q577 (R, N and K) in our two PIE12-trimer resistant pools. Each point mutant is capable of conferring the majority of PIE12-trimer resistance seen in the polyclonal pools. Surface plasmon resonance studies demonstrated substantial affinity loss between PIE12-trimer and the Q577R-mutated gp41 pocket. A high-resolution X-ray crystal structure of PIE12 bound to the Q577R pocket revealed the loss of two hydrogen bonds, the repositioning of neighboring residues, and a small decrease in buried surface area. The Q577 mutations in an NL4-3 backbone decreased viral growth rates. Fitness was ultimately rescued in resistant viral pools by a suite of compensatory mutations in gp120 and gp41, of which we identified seven candidates from our sequencing data. CONCLUSIONS: These data show that PIE12-trimer exhibits a high barrier to resistance, as extended passaging was required to develop resistant virus with normal growth rates. The primary resistance mutation, Q577R/N/K, found in the conserved gp41 pocket, substantially decreases inhibitor affinity but also damages viral fitness, and candidate compensatory mutations in gp160 have been identified.


Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral/genética , VIH-1/efectos de los fármacos , Péptidos/farmacología , Internalización del Virus/efectos de los fármacos , Línea Celular , Infecciones por VIH/virología , VIH-1/genética , Humanos , Mutación
12.
Biochem Soc Trans ; 47(1): 37-45, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30647138

RESUMEN

The progression of ESCRT (Endosomal Sorting Complexes Required for Transport) pathways, which mediate numerous cellular membrane fission events, is driven by the enzyme Vps4. Understanding of Vps4 mechanism is, therefore, of fundamental importance in its own right and, moreover, it is highly relevant to the understanding of many related AAA+ ATPases that function in multiple facets of cell biology. Vps4 unfolds its ESCRT-III protein substrates by translocating them through its central hexameric pore, thereby driving membrane fission and recycling of ESCRT-III subunits. This mini-review focuses on recent advances in Vps4 structure and mechanism, including ideas about how Vps4 translocates and unfolds ESCRT-III subunits. Related AAA+ ATPases that share structural features with Vps4 and likely utilize an equivalent mechanism are also discussed.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Animales , Microscopía por Crioelectrón , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Endosomas/metabolismo , Humanos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón Vacuolares/química
13.
Mol Cell ; 41(1): 8-19, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21211719

RESUMEN

Proteasomes degrade a multitude of protein substrates in the cytosol and nucleus, and thereby are essential for many aspects of cellular function. Because the proteolytic sites are sequestered in a closed barrel-shaped structure, activators are required to facilitate substrate access. Structural and biochemical studies of two activator families, 11S and Blm10, have provided insights to proteasome activation mechanisms, although the biological functions of these factors remain obscure. Recent advances have improved our understanding of the third activator family, including the 19S activator, which targets polyubiquitylated proteins for degradation. Here we present a structural perspective on how proteasomes are activated and how substrates are delivered to the proteolytic sites.


Asunto(s)
Activadores de Enzimas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Activadores de Enzimas/química , Modelos Moleculares , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/fisiología , Subunidades de Proteína/metabolismo , Desplegamiento Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
15.
J Biol Chem ; 292(23): 9493-9504, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28442575

RESUMEN

The 26S proteasome is a large cellular assembly that mediates the selective degradation of proteins in the nucleus and cytosol and is an established target for anticancer therapeutics. Protein substrates are typically targeted to the proteasome through modification with a polyubiquitin chain, which can be recognized by several proteasome-associated ubiquitin receptors. One of these receptors, RPN13/ADRM1, is recruited to the proteasome through direct interaction with the large scaffolding protein RPN2 within the 19S regulatory particle. To better understand the interactions between RPN13, RPN2, and ubiquitin, we used human proteins to map the RPN13-binding epitope to the C-terminal 14 residues of RPN2, which, like ubiquitin, binds the N-terminal pleckstrin-like receptor of ubiquitin (PRU) domain of RPN13. We also report the crystal structures of the RPN13 PRU domain in complex with peptides corresponding to the RPN2 C terminus and ubiquitin. Through mutational analysis, we validated the RPN2-binding interface revealed by our structures and quantified binding interactions with surface plasmon resonance and fluorescence polarization. In contrast to a previous report, we find that RPN13 binds ubiquitin with an affinity similar to that of other proteasome-associated ubiquitin receptors and that RPN2, ubiquitin, and the deubiquitylase UCH37 bind to RPN13 with independent energetics. These findings provide a detailed characterization of interactions that are important for proteasome function, indicate ubiquitin affinities that are consistent with the role of RPN13 as a proteasomal ubiquitin receptor, and have major implications for the development of novel anticancer therapeutics.


Asunto(s)
Epítopos/química , Glicoproteínas de Membrana/química , Complejo de la Endopetidasa Proteasomal/química , Ubiquitina/química , Sustitución de Aminoácidos , Epítopos/genética , Epítopos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación Missense , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios Proteicos , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
16.
Mol Cell ; 40(5): 725-35, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21094070

RESUMEN

Eukaryotic transcription and mRNA processing depend upon the coordinated interactions of many proteins, including Spn1 and Spt6, which are conserved across eukaryotes, are essential for viability, and associate with each other in some of their biologically important contexts. Here we report crystal structures of the Spn1 core alone and in complex with the binding determinant of Spt6. Mutating interface residues greatly diminishes binding in vitro and causes strong phenotypes in vivo, including a defect in maintaining repressive chromatin. Overexpression of Spn1 partially suppresses the defects caused by an spt6 mutation affecting the Spn1 interface, indicating that the Spn1-Spt6 interaction is important for managing chromatin. Spt6 binds nucleosomes directly in vitro, and this interaction is blocked by Spn1, providing further mechanistic insight into the function of the interaction. These data thereby reveal the structural and biochemical bases of molecular interactions that function in the maintenance of chromatin structure.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo , Secuencia de Aminoácidos , Chaperonas de Histonas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
17.
Mol Cell ; 37(5): 728-35, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20227375

RESUMEN

The proteasome is an abundant protease that is critically important for numerous cellular pathways. Proteasomes are activated in vitro by three known classes of proteins/complexes, including Blm10/PA200. Here, we report a 3.4 A resolution crystal structure of a proteasome-Blm10 complex, which reveals that Blm10 surrounds the proteasome entry pore in the 1.2 MDa complex to form a largely closed dome that is expected to restrict access of potential substrates. This architecture and the observation that Blm10 induces a disordered proteasome gate structure challenge the assumption that Blm10 functions as an activator of proteolysis in vivo. The Blm10 C terminus binds in the same manner as seen for 11S activators and inferred for 19S/PAN activators and indicates a unified model for gate opening. We also demonstrate that Blm10 acts to maintain mitochondrial function. Consistent with the structural data, the C-terminal residues of Blm10 are needed for this activity.


Asunto(s)
Mitocondrias/enzimología , Complejo de la Endopetidasa Proteasomal/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Genotipo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
18.
J Biol Chem ; 290(21): 13490-9, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25833946

RESUMEN

The endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis. Here, we report quantitative binding studies that demonstrate that residues from helix 5 of the Vps2p subunit of ESCRT-III bind to the central pore of an asymmetric Vps4p hexamer in a manner that is dependent upon the presence of flexible nucleotide analogs that can mimic multiple states in the ATP hydrolysis cycle. We also find that substrate engagement is autoinhibited by the Vps4p MIT domain and that this inhibition is relieved by binding of either Type 1 or Type 2 MIM elements, which bind the Vps4p MIT domain through different interfaces. These observations support the model that Vps4 substrates are initially recruited by an MIM-MIT interaction that activates the Vps4 central pore to engage substrates and generate force, thereby triggering ESCRT-III disassembly.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cristalografía por Rayos X , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Endosomas , Polarización de Fluorescencia , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química
19.
Proc Natl Acad Sci U S A ; 110(9): 3345-50, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401505

RESUMEN

The packaging of DNA into nucleosomal structures limits access for templated processes such as transcription and DNA repair. The repositioning or ejection of nucleosomes is therefore critically important for regulated events, including gene expression. This activity is provided by chromatin remodeling complexes, or remodelers, which are typically large, multisubunit complexes that use an ATPase subunit to translocate the DNA. Many remodelers contain pairs or multimers of actin-related proteins (ARPs) that contact the helicase-SANT-associated (HSA) domain within the catalytic ATPase subunit and are thought to regulate ATPase activity. Here, we determined the structure of a four-protein subcomplex within the SWI/SNF remodeler that comprises the Snf2 HSA domain, Arp7, Arp9, and repressor of Ty1 transposition, gene 102 (Rtt102). Surprisingly, unlike characterized actin-actin associations, the two ARPs pack like spoons and straddle the HSA domain, which forms a 92-Å-long helix. The ARP-HSA interactions are reminiscent of contacts between actin and many binding partners and are quite different from those in the Arp2/3 complex. Rtt102 wraps around one side of the complex in a highly extended conformation that contacts both ARPs and therefore stabilizes the complex, yet functions to reduce by ∼2.4-fold the remodeling and ATPase activity of complexes containing the Snf2 ATPase domain. Thus, our structure provides a foundation for developing models of remodeler function, including mechanisms of coupling between ARPs and the ATPase translocation activity.


Asunto(s)
Actinas/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/química , Proteínas de Microfilamentos/química , Complejos Multiproteicos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Animales , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Drosophila melanogaster/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Nucleosomas/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
20.
J Biol Chem ; 288(15): 10188-94, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23417676

RESUMEN

The histone chaperone FACT is an essential and abundant heterodimer found in all eukaryotes. Here we report a crystal structure of the middle domain of the large subunit of FACT (Spt16-M) to reveal a double pleckstrin homology architecture. This structure was found previously in the Pob3-M domain of the small subunit of FACT and in the related histone chaperone Rtt106, although Spt16-M is distinguished from these structures by the presence of an extended α-helix and a C-terminal addition. Consistent with our finding that the double pleckstrin homology structure is common to these three histone chaperones and reports that Pob3 and Rtt106 double pleckstrin homology domains bind histones H3-H4, we also find that Spt16-M binds H3-H4 with low micromolar affinity. Our structure provides a framework for interpreting a large body of genetic data regarding the physiological functions of FACT, including the identification of potential interaction surfaces for binding histones or other proteins.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas del Grupo de Alta Movilidad/química , Chaperonas Moleculares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Factores de Elongación Transcripcional/química , Animales , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA