Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Med Res Methodol ; 21(1): 16, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430778

RESUMEN

BACKGROUND: Multi-state models are being increasingly used to capture complex disease pathways. The convenient formula of the exponential multi-state model can facilitate a quick and accessible understanding of the data. However, assuming time constant transition rates is not always plausible. On the other hand, obtaining predictions from a fitted model with time-dependent transitions can be challenging. One proposed solution is to utilise a general simulation algorithm to calculate predictions from a fitted multi-state model. METHODS: Predictions obtained from an exponential multi-state model were compared to those obtained from two different parametric models and to non-parametric Aalen-Johansen estimates. The first comparative approach fitted a multi-state model with transition-specific distributions, chosen separately based on the Akaike Information Criterion. The second approach was a Royston-Parmar multi-state model with 4 degrees of freedom, which was chosen as a reference model flexible enough to capture complex hazard shapes. All quantities were obtained analytically for the exponential and Aalen-Johansen approaches. The transition rates for the two comparative approaches were also obtained analytically, while all other quantities were obtained from the fitted models via a general simulation algorithm. Metrics investigated were: transition probabilities, attributable mortality (AM), population attributable fraction (PAF) and expected length of stay. This work was performed on previously analysed hospital acquired infection (HAI) data. By definition, a HAI takes three days to develop and therefore selected metrics were also predicted from time 3 (delayed entry). RESULTS: Despite clear deviations from the constant transition rates assumption, the empirical estimates of the transition probabilities were approximated reasonably well by the exponential model. However, functions of the transition probabilities, e.g. AM and PAF, were not well approximated and the comparative models offered considerable improvements for these metrics. They also provided consistent predictions with the empirical estimates in the case of delayed entry time, unlike the exponential model. CONCLUSION: We conclude that methods and software are readily available for obtaining predictions from multi-state models that do not assume constant transition rates. The multistate package in Stata facilitates a range of predictions with confidence intervals, which can provide a more comprehensive understanding of the data. User-friendly code is provided.


Asunto(s)
Hospitales , Modelos Estadísticos , Humanos , Cadenas de Markov , Probabilidad , Análisis de Supervivencia
2.
J Pharmacokinet Pharmacodyn ; 46(5): 441-455, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31127458

RESUMEN

Drug development for rare diseases is challenged by small populations and limited data. This makes development of clinical trial protocols difficult and contributes to the uncertainty around whether or not a potential therapy is efficacious. The use of data standards to aggregate data from multiple sources, and the use of such integrated databases to develop statistical models can inform protocol development and reduce the risks in developing new therapies. Achieving regulatory endorsement of such models through defined pathways at the US Food and Drug Administration and European Medicines Authority allows such tools to be used by the drug development community for defined contexts of use without further need for discussion of the underlying model(s). The Duchenne Regulatory Science Consortium (D-RSC) has brought together multiple stakeholders to develop a clinical trial simulation tool for Duchenne muscular dystrophy using such an approach. Here we describe the work of D-RSC as an example of how such an approach may be effective at reducing uncertainty in drug development for rare diseases, and thus bringing effective therapies to patients faster.


Asunto(s)
Modelos Biológicos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Producción de Medicamentos sin Interés Comercial/métodos , Ensayos Clínicos como Asunto , Simulación por Computador , Humanos , Estados Unidos , United States Food and Drug Administration
3.
Neurology ; 97(23): e2304-e2314, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34645707

RESUMEN

BACKGROUND AND OBJECTIVES: Duchenne muscular dystrophy (DMD) is a rare progressive disease that is often diagnosed in early childhood and leads to considerably reduced life expectancy; because of its rarity, research literature and patient numbers are limited. To fully characterize the natural history, it is crucial to obtain appropriate estimates of the life expectancy and mortality rates of patients with DMD. METHODS: A systematic review of the published literature on mortality in DMD up to July 2020 was undertaken, specifically focusing on publications in which Kaplan-Meier (KM) survival curves with age as a timescale were presented. These were digitized, and individual patient data (IPD) were reconstructed. The pooled IPD were analyzed with the KM estimator and parametric survival analysis models. Estimates were also stratified by birth cohort. RESULTS: Of 1,177 articles identified, 14 publications met the inclusion criteria and provided data on 2,283 patients, of whom 1,049 had died. Median life expectancy was 22.0 years (95% confidence interval [CI] 21.2, 22.4). Analyses stratified by 3 time periods in which patients were born showed markedly increased life expectancy in more recent patient populations; patients born after 1990 have a median life expectancy of 28.1 years (95% CI 25.1, 30.3). DISCUSSION: This article presents a full overview of mortality across the lifetime of a patient with DMD and highlights recent improvements in survival. In the absence of large-scale prospective cohort studies or trials reporting mortality data for patients with DMD, extraction of IPD from the literature provides a viable alternative to estimating life expectancy for this patient population.


Asunto(s)
Distrofia Muscular de Duchenne , Preescolar , Humanos , Estimación de Kaplan-Meier , Esperanza de Vida , Distrofia Muscular de Duchenne/epidemiología , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA