Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Clin Neurosci ; 124: 102-108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685181

RESUMEN

OBJECTIVE: Parasagittal meningiomas (PM) are treated with primary microsurgery, radiosurgery (SRS), or surgery with adjuvant radiation. We investigated predictors of tumor progression requiring salvage surgery or radiation treatment. We sought to determine whether primary treatment modality, or radiologic, histologic, and clinical variables were associated with tumor progression requiring salvage treatment. METHODS: Retrospective study of 109 consecutive patients with PMs treated with primary surgery, radiation (RT), or surgery plus adjuvant RT (2000-2017) and minimum 5 years follow-up. Patient, radiologic, histologic, and treatment data were analyzed using standard statistical methods. RESULTS: Median follow up was 8.5 years. Primary treatment for PM was surgery in 76 patients, radiation in 16 patients, and surgery plus adjuvant radiation in 17 patients. Forty percent of parasagittal meningiomas in our cohort required some form of salvage treatment. On univariate analysis, brain invasion (OR: 6.93, p < 0.01), WHO grade 2/3 (OR: 4.54, p < 0.01), peritumoral edema (OR: 2.81, p = 0.01), sagittal sinus invasion (OR: 6.36, p < 0.01), sagittal sinus occlusion (OR: 4.86, p < 0.01), and non-spherical shape (OR: 3.89, p < 0.01) were significantly associated with receiving salvage treatment. On multivariate analysis, superior sagittal sinus invasion (OR: 8.22, p = 0.01) and WHO grade 2&3 (OR: 7.58, p < 0.01) were independently associated with receiving salvage treatment. There was no difference in time to salvage therapy (p = 0.11) or time to progression (p = 0.43) between patients receiving primary surgery alone, RT alone, or surgery plus adjuvant RT. Patients who had initial surgery were more likely to have peritumoral edema on preoperative imaging (p = 0.01). Median tumor volume was 19.0 cm3 in patients receiving primary surgery, 5.3 cm3 for RT, and 24.4 cm3 for surgery plus adjuvant RT (p < 0.01). CONCLUSION: Superior sagittal sinus invasion and WHO grade 2/3 are independently associated with PM progression requiring salvage therapy regardless of extent of resection or primary treatment modality. Parasagittal meningiomas have a high rate of recurrence with 80.0% of patients with WHO grade 2/3 tumors with sinus invasion requiring salvage treatment whereas only 13.6% of the WHO grade 1 tumors without sinus invasion required salvage treatment. This information is useful when counseling patients about disease management and setting expectations.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Radiocirugia , Terapia Recuperativa , Humanos , Terapia Recuperativa/métodos , Meningioma/radioterapia , Meningioma/cirugía , Masculino , Femenino , Radiocirugia/métodos , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/cirugía , Anciano , Adulto , Radioterapia Adyuvante , Anciano de 80 o más Años , Procedimientos Neuroquirúrgicos/métodos , Estudios de Seguimiento , Progresión de la Enfermedad
2.
Front Oncol ; 12: 924245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982952

RESUMEN

Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications in neuro-oncological radiomic analysis, such as lack of large accessible standardized real patient radiomic brain tumor data of all kinds and reliable predictions on tumor response upon various treatments. Therefore, understanding ML-based AI technologies is critically important to help us address the skyrocketing demands of neuro-oncology clinical deployments. Here, we provide an overview on the latest advancements in ML techniques for brain tumor radiomic analysis, emphasizing proprietary and public dataset preparation and state-of-the-art ML models for brain tumor diagnosis, classifications (e.g., primary and secondary tumors), discriminations between treatment effects (pseudoprogression, radiation necrosis) and true progression, survival prediction, inflammation, and identification of brain tumor biomarkers. We also compare the key features of ML models in the realm of neuroradiology with ML models employed in other medical imaging fields and discuss open research challenges and directions for future work in this nascent precision medicine area.

3.
J Clin Med ; 11(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233828

RESUMEN

Glioblastoma (GBM) continues to be one of the most lethal malignancies and is almost always fatal. In this review article, the role of radiation therapy, systemic therapy, as well as the molecular basis of classifying GBM is described. Technological advances in the treatment of GBM are outlined as well as the diagnostic imaging characteristics of this tumor. In addition, factors that affect prognosis such as differentiating progression from treatment effect is discussed. The role of MRI guided radiation therapy and how this technology may provide a mechanism to improve the care of patients with this disease are described.

4.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497370

RESUMEN

Supratentorial non-skull base meningiomas are the most common primary central nervous system tumor subtype. An understanding of their pathophysiology, imaging characteristics, and clinical management options will prove of substantial value to the multi-disciplinary team which may be involved in their care. Extensive review of the broad literature on the topic is conducted. Narrowing the scope to meningiomas located in the supratentorial non-skull base anatomic location highlights nuances specific to this tumor subtype. Advances in our understanding of the natural history of the disease and how findings from both molecular pathology and neuroimaging have impacted our understanding are discussed. Clinical management and the rationale underlying specific approaches including observation, surgery, radiation, and investigational systemic therapies is covered in detail. Future directions for probable advances in the near and intermediate term are reviewed.

5.
Neuro Oncol ; 23(2): 251-263, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33068415

RESUMEN

BACKGROUND: Recent epidemiological studies have suggested that sexual dimorphism influences treatment response and prognostic outcome in glioblastoma (GBM). To this end, we sought to (i) identify distinct sex-specific radiomic phenotypes-from tumor subcompartments (peritumoral edema, enhancing tumor, and necrotic core) using pretreatment MRI scans-that are prognostic of overall survival (OS) in GBMs, and (ii) investigate radiogenomic associations of the MRI-based phenotypes with corresponding transcriptomic data, to identify the signaling pathways that drive sex-specific tumor biology and treatment response in GBM. METHODS: In a retrospective setting, 313 GBM patients (male = 196, female = 117) were curated from multiple institutions for radiomic analysis, where 130 were used for training and independently validated on a cohort of 183 patients. For the radiogenomic analysis, 147 GBM patients (male = 94, female = 53) were used, with 125 patients in training and 22 cases for independent validation. RESULTS: Cox regression models of radiomic features from gadolinium T1-weighted MRI allowed for developing more precise prognostic models, when trained separately on male and female cohorts. Our radiogenomic analysis revealed higher expression of Laws energy features that capture spots and ripple-like patterns (representative of increased heterogeneity) from the enhancing tumor region, as well as aggressive biological processes of cell adhesion and angiogenesis to be more enriched in the "high-risk" group of poor OS in the male population. In contrast, higher expressions of Laws energy features (which detect levels and edges) from the necrotic core with significant involvement of immune related signaling pathways was observed in the "low-risk" group of the female population. CONCLUSIONS: Sexually dimorphic radiogenomic models could help risk-stratify GBM patients for personalized treatment decisions.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Pronóstico , Estudios Retrospectivos
6.
Radiol Artif Intell ; 2(6): e190168, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33330847

RESUMEN

PURPOSE: To identify radiomic features extracted from the tumor habitat on routine MR images that are prognostic for progression-free survival (PFS) and to assess their morphologic basis with corresponding histopathologic attributes in glioblastoma (GBM). MATERIALS AND METHODS: In this retrospective study, 156 pretreatment GBM MR images (gadolinium-enhanced T1-weighted, T2-weighted, and fluid-attenuated inversion recovery [FLAIR] images) were curated. Of these 156 images, 122 were used for training (90 from The Cancer Imaging Archive and 32 from the Cleveland Clinic, acquired between December 1, 2011, and May 1, 2018) and 34 were used for validation. The validation set was obtained from the Ivy Glioblastoma Atlas Project database, for which the percentage extent of 11 histologic attributes was available on corresponding histopathologic specimens of the resected tumor. Following expert annotations of the tumor habitat (necrotic core, enhancing tumor, and FLAIR-hyperintense subcompartments), 1008 radiomic descriptors (eg, Haralick texture features, Laws energy features, co-occurrence of local anisotropic gradient orientations [CoLIAGe]) were extracted from the three MRI sequences. The top radiomic features were obtained from each subcompartment in the training set on the basis of their ability to risk-stratify patients according to PFS. These features were then concatenated to create a radiomics risk score (RRS). The RRS was independently validated on a holdout set. In addition, correlations (P < .05) of RRS features were computed, with the percentage extent of the 11 histopathologic attributes, using Spearman correlation analysis. RESULTS: RRS yielded a concordance index of 0.80 on the validation set and constituted radiomic features, including Laws (capture edges, waves, ripple patterns) and CoLIAGe (capture disease heterogeneity) from enhancing tumor and FLAIR hyperintensity. These radiomic features were correlated with histopathologic attributes associated with disease aggressiveness in GBM, particularly tumor infiltration (P = .0044) and hyperplastic blood vessels (P = .0005). CONCLUSION: Preliminary findings demonstrated significant associations of prognostic radiomic features with disease-specific histologic attributes, with implications for risk-stratifying patients with GBM for personalized treatment decisions. Supplemental material is available for this article. © RSNA, 2020.

7.
Med Phys ; 47(12): 6039-6052, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33118182

RESUMEN

PURPOSE: The availability of radiographic magnetic resonance imaging (MRI) scans for the Ivy Glioblastoma Atlas Project (Ivy GAP) has opened up opportunities for development of radiomic markers for prognostic/predictive applications in glioblastoma (GBM). In this work, we address two critical challenges with regard to developing robust radiomic approaches: (a) the lack of availability of reliable segmentation labels for glioblastoma tumor sub-compartments (i.e., enhancing tumor, non-enhancing tumor core, peritumoral edematous/infiltrated tissue) and (b) identifying "reproducible" radiomic features that are robust to segmentation variability across readers/sites. ACQUISITION AND VALIDATION METHODS: From TCIA's Ivy GAP cohort, we obtained a paired set (n = 31) of expert annotations approved by two board-certified neuroradiologists at the Hospital of the University of Pennsylvania (UPenn) and at Case Western Reserve University (CWRU). For these studies, we performed a reproducibility study that assessed the variability in (a) segmentation labels and (b) radiomic features, between these paired annotations. The radiomic variability was assessed on a comprehensive panel of 11 700 radiomic features including intensity, volumetric, morphologic, histogram-based, and textural parameters, extracted for each of the paired sets of annotations. Our results demonstrated (a) a high level of inter-rater agreement (median value of DICE ≥0.8 for all sub-compartments), and (b) ≈24% of the extracted radiomic features being highly correlated (based on Spearman's rank correlation coefficient) to annotation variations. These robust features largely belonged to morphology (describing shape characteristics), intensity (capturing intensity profile statistics), and COLLAGE (capturing heterogeneity in gradient orientations) feature families. DATA FORMAT AND USAGE NOTES: We make publicly available on TCIA's Analysis Results Directory (https://doi.org/10.7937/9j41-7d44), the complete set of (a) multi-institutional expert annotations for the tumor sub-compartments, (b) 11 700 radiomic features, and (c) the associated reproducibility meta-analysis. POTENTIAL APPLICATIONS: The annotations and the associated meta-data for Ivy GAP are released with the purpose of enabling researchers toward developing image-based biomarkers for prognostic/predictive applications in GBM.


Asunto(s)
Glioblastoma , Estudios de Cohortes , Glioblastoma/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados
8.
Clin Cancer Res ; 26(8): 1866-1876, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32079590

RESUMEN

PURPOSE: To (i) create a survival risk score using radiomic features from the tumor habitat on routine MRI to predict progression-free survival (PFS) in glioblastoma and (ii) obtain a biological basis for these prognostic radiomic features, by studying their radiogenomic associations with molecular signaling pathways. EXPERIMENTAL DESIGN: Two hundred three patients with pretreatment Gd-T1w, T2w, T2w-FLAIR MRI were obtained from 3 cohorts: The Cancer Imaging Archive (TCIA; n = 130), Ivy GAP (n = 32), and Cleveland Clinic (n = 41). Gene-expression profiles of corresponding patients were obtained for TCIA cohort. For every study, following expert segmentation of tumor subcompartments (necrotic core, enhancing tumor, peritumoral edema), 936 3D radiomic features were extracted from each subcompartment across all MRI protocols. Using Cox regression model, radiomic risk score (RRS) was developed for every protocol to predict PFS on the training cohort (n = 130) and evaluated on the holdout cohort (n = 73). Further, Gene Ontology and single-sample gene set enrichment analysis were used to identify specific molecular signaling pathway networks associated with RRS features. RESULTS: Twenty-five radiomic features from the tumor habitat yielded the RRS. A combination of RRS with clinical (age and gender) and molecular features (MGMT and IDH status) resulted in a concordance index of 0.81 (P < 0.0001) on training and 0.84 (P = 0.03) on the test set. Radiogenomic analysis revealed associations of RRS features with signaling pathways for cell differentiation, cell adhesion, and angiogenesis, which contribute to chemoresistance in GBM. CONCLUSIONS: Our findings suggest that prognostic radiomic features from routine Gd-T1w MRI may also be significantly associated with key biological processes that affect response to chemotherapy in GBM.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/mortalidad , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Mutación , Medición de Riesgo/métodos , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Transducción de Señal , Tasa de Supervivencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA