Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Dis ; 143: 105012, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32653672

RESUMEN

Heterozygous mutations in the ATP1A3 gene, coding for an alpha subunit isoform (α3) of Na+/K+-ATPase, are the primary genetic cause for rapid-onset dystonia-parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). Recently, cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss (CAPOS), early infantile epileptic encephalopathy (EIEE), childhood rapid onset ataxia (CROA) and relapsing encephalopathy with rapid onset ataxia (RECA) extend the clinical spectrum of ATP1A3 related disorders. AHC and RDP demonstrate distinct clinical features, with AHC symptoms being generally more severe compared to RDP. Currently, it is largely unknown what determines the disease severity, and whether severity is linked to the degree of functional impairment of the α3 subunit. Here we compared the effect of twelve different RDP and AHC specific mutations on the expression and function of the α3 Na+/K+-ATPase in transfected HEK cells and oocytes. All studied mutations led to functional impairment of the pump, as reflected by lower survival rate and reduced pump current. No difference in the extent of impairment, nor in the expression level, was found between the two phenotypes, suggesting that these measures of pump dysfunction do not exclusively determine the disease severity.


Asunto(s)
Trastornos Distónicos/genética , Hemiplejía/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Trastornos Distónicos/metabolismo , Células HEK293 , Hemiplejía/metabolismo , Humanos , Mutación , Xenopus
2.
Am J Hum Genet ; 90(1): 61-8, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22243965

RESUMEN

Low copper and ceruloplasmin in serum are the diagnostic hallmarks for Menkes disease, Wilson disease, and aceruloplasminemia. We report on five patients from four unrelated families with these biochemical findings who presented with a lethal autosomal-recessive syndrome of congenital cataracts, hearing loss, and severe developmental delay. Cerebral MRI showed pronounced cerebellar hypoplasia and hypomyelination. Homozygosity mapping was performed and displayed a region of commonality among three families at chromosome 3q25. Deep sequencing and conventional sequencing disclosed homozygous or compound heterozygous mutations for all affected subjects in SLC33A1 encoding a highly conserved acetylCoA transporter (AT-1) required for acetylation of multiple gangliosides and glycoproteins. The mutations were found to cause reduced or absent AT-1 expression and abnormal intracellular localization of the protein. We also showed that AT-1 knockdown in HepG2 cells leads to reduced ceruloplasmin secretion, indicating that the low copper in serum is due to reduced ceruloplasmin levels and is not a sign of copper deficiency. The severity of the phenotype implies an essential role of AT-1 in proper posttranslational modification of numerous proteins, without which normal lens and brain development is interrupted. Furthermore, AT-1 defects are a new and important differential diagnosis in patients with low copper and ceruloplasmin in serum.


Asunto(s)
Catarata/genética , Ceruloplasmina/metabolismo , Cobre/sangre , Pérdida Auditiva/genética , Proteínas de Transporte de Membrana/genética , Mutación/genética , Secuencia de Bases , Catarata/congénito , Cerebelo/anomalías , Cerebelo/crecimiento & desarrollo , Ceruloplasmina/análisis , Niño , Preescolar , Mapeo Cromosómico , Cromosomas Humanos Par 3/genética , Femenino , Pérdida Auditiva/congénito , Células Hep G2 , Humanos , Lactante , Masculino , Proteínas de Transporte de Membrana/biosíntesis , Datos de Secuencia Molecular , Índice de Severidad de la Enfermedad
3.
J Biol Chem ; 287(1): 210-221, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22045812

RESUMEN

The neurodegenerative disease X-linked adrenoleukodystrophy (X-ALD) is characterized by the abnormal accumulation of very long chain fatty acids. Mutations in the gene encoding the peroxisomal ATP-binding cassette half-transporter, adrenoleukodystrophy protein (ALDP), are the primary cause of X-ALD. To gain a better understanding of ALDP dysfunction, we searched for interaction partners of ALDP and identified binary interactions to proteins with functions in fatty acid synthesis (ACLY, FASN, and ACC) and activation (FATP4), constituting a thus far unknown fatty acid synthesis-transport machinery at the cytoplasmic side of the peroxisomal membrane. This machinery adds to the knowledge of the complex mechanisms of peroxisomal fatty acid metabolism at a molecular level and elucidates potential epigenetic mechanisms as regulatory processes in the pathogenesis and thus the clinical course of X-ALD.


Asunto(s)
Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Membranas Intracelulares/metabolismo , Peroxisomas/metabolismo , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Adrenoleucodistrofia/metabolismo , Transporte Biológico , Ácido Graso Sintasas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Inmunoprecipitación , Análisis Espectral
4.
J Neurodev Disord ; 5(1): 23, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-24020679

RESUMEN

BACKGROUND: Fragile X syndrome is caused by the loss of FMRP expression due to methylation of the FMR1 promoter. Treatment of fragile X syndrome patients' lymphoblastoid cells with 5-azadeoxycytidine results in demethylation of the promoter and reactivation of the gene. The aim of the study was to analyze if methotrexate, an agent which also reduces DNA methylation but with less toxicity than 5-azadeoxycytidine, has therapeutic potential in fragile X syndrome. METHODS: Fibroblasts of fragile X syndrome patients were treated with methotrexate in concentrations ranging from 1 to 4 µg/ml for up to 14 days. FMR1 and FMRP expression were analyzed by quantitative PCR and western blotting. RESULTS: FMR1 mRNA was detected and levels correlated positively with methotrexate concentrations and time of treatment, but western blotting did not show detectable FMRP levels. CONCLUSIONS: We show that it is possible to reactivate FMR1 transcription in fibroblasts of fragile X syndrome patients by treatment with methotrexate. However, we were not able to show FMRP expression, possibly due to the reduced translation efficacy caused by the triplet repeat extension. Unless FMR1 reactivation is more effective in vivo our results indicate that methotrexate has no role in the treatment of fragile X syndrome.

5.
J Biol Chem ; 282(37): 26997-27005, 2007 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17609205

RESUMEN

The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half-ATP-binding cassette (ABC) transporters in the mammalian peroxisome membrane. Mutations in the gene encoding ALDP result in a devastating neurodegenerative disorder, X-linked adrenoleukodystrophy (X-ALD) that is associated with elevated levels of very long chain fatty acids because of impaired peroxisomal beta-oxidation. The interactions of peroxisomal ABC transporters, their role in the peroxisomal membrane, and their functions in disease pathogenesis are poorly understood. Studies on ABC transporters revealed that half-transporters have to dimerize to gain functionality. So far, conflicting observations are described for ALDP. By the use of in vitro methods (yeast two-hybrid and immunoprecipitation assays) on the one hand, it was shown that ALDP can form homodimers as well as heterodimers with PMP70 and ALDR, while on the other hand, it was demonstrated that ALDP and PMP70 exclusively homodimerize. To circumvent the problems of artificial interactions due to biochemical sample preparation in vitro, we investigated protein-protein interaction of ALDP in its physiological environment by FRET microscopy in intact living cells. The statistical relevance of FRET data was determined in two different ways using probability distribution shift analysis and Kolmogorov-Smirnov statistics. We demonstrate in vivo that ALDP and PMP70 form homodimers as well as ALDP/PMP70 heterodimers where ALDP homodimers predominate. Using C-terminal deletion constructs of ALDP, we demonstrate that the last 87 C-terminal amino acids harbor the most important protein domain mediating these interactions, and that the N-terminal transmembrane region of ALDP has an additional stabilization effect on ALDP homodimers. Loss of ALDP homo- or heterodimerization is highly relevant for understanding the disease mechanisms of X-ALD.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/fisiología , Adrenoleucodistrofia/etiología , Secuencia de Bases , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Humanos , Microscopía , Datos de Secuencia Molecular , Relación Estructura-Actividad
6.
Am J Hum Genet ; 78(6): 988-98, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16685649

RESUMEN

Cathepsin D is a ubiquitously expressed lysosomal protease that is involved in proteolytic degradation, cell invasion, and apoptosis. In mice and sheep, cathepsin D deficiency is known to cause a fatal neurodegenerative disease. Here, we report a novel disorder in a child with early blindness and progressive psychomotor disability. Two missense mutations in the CTSD gene, F229I and W383C, were identified and were found to cause markedly reduced proteolytic activity and a diminished amount of cathepsin D in patient fibroblasts. Expression of cathepsin D mutants in cathepsin D(-/-) mouse fibroblasts revealed disturbed posttranslational processing and intracellular targeting for W383C and diminished maximal enzyme velocity for F229I. The structural effects of cathepsin D mutants were estimated by computer modeling, which suggested larger structural alterations for W383C than for F229I. Our studies broaden the group of human neurodegenerative disorders and add new insight into the cellular functions of human cathepsin D.


Asunto(s)
Ceguera/genética , Catepsina D/genética , Enfermedades Neurodegenerativas/genética , Trastornos Psicomotores/genética , Adolescente , Secuencia de Aminoácidos , Animales , Ceguera/enzimología , Ceguera/patología , Catepsina D/análisis , Catepsina D/metabolismo , Femenino , Fibroblastos/enzimología , Heterocigoto , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Mutación Missense , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/patología , Conformación Proteica , Trastornos Psicomotores/enzimología , Trastornos Psicomotores/patología , Células de Schwann/enzimología , Células de Schwann/ultraestructura , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA