Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 60(8): 4442-52, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27139467

RESUMEN

Human African trypanosomiasis (HAT) is a major tropical disease for which few drugs for treatment are available, driving the need for novel active compounds. Recently, morpholino-substituted benzyl amides of the fluoroquinolone-type antibiotics were identified to be compounds highly active against Trypanosoma brucei brucei Since the lead compound GHQ168 was challenged by poor water solubility in previous trials, the aim of this study was to introduce structural variations to GHQ168 as well as to formulate GHQ168 with the ultimate goal to increase its aqueous solubility while maintaining its in vitro antitrypanosomal activity. The pharmacokinetic parameters of spray-dried GHQ168 and the newly synthesized compounds GHQ242 and GHQ243 in mice were characterized by elimination half-lives ranging from 1.5 to 3.5 h after intraperitoneal administration (4 mice/compound), moderate to strong human serum albumin binding for GHQ168 (80%) and GHQ243 (45%), and very high human serum albumin binding (>99%) for GHQ242. For the lead compound, GHQ168, the apparent clearance was 112 ml/h and the apparent volume of distribution was 14 liters/kg of body weight (BW). Mice infected with T. b. rhodesiense (STIB900) were treated in a stringent study scheme (2 daily applications between days 3 and 6 postinfection). Exposure to spray-dried GHQ168 in contrast to the control treatment resulted in mean survival durations of 17 versus 9 days, respectively, a difference that was statistically significant. Results that were statistically insignificantly different were obtained between the control and the GHQ242 and GHQ243 treatments. Therefore, GHQ168 was further profiled in an early-treatment scheme (2 daily applications at days 1 to 4 postinfection), and the results were compared with those obtained with a control treatment. The result was statistically significant mean survival times exceeding 32 days (end of the observation period) versus 7 days for the GHQ168 and control treatments, respectively. Spray-dried GHQ168 demonstrated exciting antitrypanosomal efficacy.


Asunto(s)
Amidas/uso terapéutico , Quinolonas/uso terapéutico , Tripanocidas/uso terapéutico , Amidas/administración & dosificación , Amidas/farmacocinética , Animales , Femenino , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones , Quinolonas/administración & dosificación , Quinolonas/farmacocinética , Ratas , Ratas Sprague-Dawley , Tripanocidas/administración & dosificación , Tripanocidas/farmacocinética , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/patogenicidad , Trypanosoma brucei rhodesiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/patogenicidad
2.
J Virol ; 87(1): 314-26, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23077316

RESUMEN

The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering.


Asunto(s)
Hemaglutininas Virales/química , Hemaglutininas Virales/metabolismo , Morbillivirus/fisiología , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Internalización del Virus , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Epítopos/inmunología , Humanos , Unión Proteica , Conformación Proteica
3.
Chem Biol ; 21(7): 890-902, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036778

RESUMEN

In spite of the crucial role of heterotrimeric G proteins as molecular switches transmitting signals from G protein-coupled receptors, their selective manipulation with small molecule, cell-permeable inhibitors still remains an unmet challenge. Here, we report that the small molecule BIM-46187, previously classified as pan-G protein inhibitor, preferentially silences Gαq signaling in a cellular context-dependent manner. Investigations into its mode of action reveal that BIM traps Gαq in the empty pocket conformation by permitting GDP exit but interdicting GTP entry, a molecular mechanism not yet assigned to any other small molecule Gα inhibitor to date. Our data show that Gα proteins may be "frozen" pharmacologically in an intermediate conformation along their activation pathway and propose a pharmacological strategy to specifically silence Gα subclasses with cell-permeable inhibitors.


Asunto(s)
Ciclohexanos/metabolismo , Ciclohexanos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Pirazinas/metabolismo , Pirazinas/farmacología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Ciclohexanos/química , Dimerización , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Modelos Moleculares , Permeabilidad , Conformación Proteica/efectos de los fármacos , Pirazinas/química , Transducción de Señal/efectos de los fármacos
4.
J Med Chem ; 55(6): 2538-48, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22376072

RESUMEN

Human African trypanosomiasis (HAT) or sleeping sickness is caused by two subspecies of Trypanosoma brucei , Trypanosoma brucei gambiense , and Trypanosoma brucei rhodesiense and is one of Africa's old plagues. It causes a huge number of infections and cases of death per year because, apart from limited access to health services, only inefficient chemotherapy is available. Since it was reported that quinolones such as ciprofloxacin show antitrypanosomal activity, a novel quinolone-type library was synthesized and tested. The biological evaluation illustrated that 4-quinolones with a benzylamide function in position 3 and cyclic or acyclic amines in position 7 exhibit high antitrypanosomal activity. Structure-activity relationships (SAR) are established to identify essential structural elements. This analysis led to lead structure 29, which exhibits promising in vitro activity against T. b. brucei (IC(50) = 47 nM) and T. b. rhodesiense (IC(50) = 9 nM) combined with low cytotoxicity against macrophages J774.1. Screening for morphological changes of trypanosomes treated with compounds 19 and 29 suggested differences in the morphology of mitochondria of treated cells compared to those of untreated cells. Segregation of the kinetoplast is hampered in trypanosomes treated with these compounds; however, topoisomerase II is probably not the main drug target.


Asunto(s)
Morfolinas/síntesis química , Quinolonas/síntesis química , Tripanocidas/síntesis química , Trypanosoma brucei gambiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/efectos de los fármacos , Enfermedad Aguda , Animales , Línea Celular , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Cinetoplasto/metabolismo , Ratones , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/ultraestructura , Modelos Moleculares , Morfolinas/química , Morfolinas/farmacología , Quinolonas/química , Quinolonas/farmacología , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei gambiense/ultraestructura , Trypanosoma brucei rhodesiense/ultraestructura , Tripanosomiasis Africana/tratamiento farmacológico
5.
J Med Chem ; 52(14): 4257-65, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19499921

RESUMEN

Nipah virus (NiV), a highly pathogenic paramyxovirus, causes respiratory disease in pigs and severe febrile encephalitis in humans with high mortality rates. On the basis of the structural similarity of viral fusion (F) proteins within the family Paramyxoviridae, we designed and tested 18 quinolone derivatives in a NiV and measles virus (MV) envelope protein-based fusion assay beside evaluation of cytotoxicity. We found five compounds successfully inhibiting NiV envelope protein-induced cell fusion. The most active molecules (19 and 20), which also inhibit the syncytium formation induced by infectious NiV and show a low cytotoxicity in Vero cells, represent a promising lead quinolone-type compound structure. Molecular modeling indicated that compound 19 fits well into a particular protein cavity present on the NiV F protein that is important for the fusion process.


Asunto(s)
Virus Nipah/fisiología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos , Animales , Línea Celular , Chlorocebus aethiops , Simulación por Computador , Perros , Relación Dosis-Respuesta a Droga , Humanos , Virus del Sarampión/efectos de los fármacos , Virus del Sarampión/metabolismo , Virus del Sarampión/fisiología , Modelos Moleculares , Conformación Molecular , Virus Nipah/efectos de los fármacos , Virus Nipah/metabolismo , Quinolonas/química , Quinolonas/farmacología , Proteínas del Envoltorio Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA