Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 21(14): 3516-30, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22486940

RESUMEN

Osmoregulation is a vital physiological function for fish, as it helps maintain a stable intracellular concentration of ions in environments of variable salinities. We focused on a primarily freshwater species, the European whitefish (Coregonus lavaretus), to investigate the molecular mechanisms underlying salinity tolerance and examine whether these mechanisms differ between genetically similar populations that spawn in freshwater vs. brackishwater environments. A common garden experiment involving 27 families in two populations and five salinity treatments together with a large-scale, high-resolution mass spectrometry experiment that quantified 1500 proteins was conducted to assess phenotypic and proteomic responses during early development, from fertilization until hatching, in the studied populations. The populations displayed drastically different phenotypic and proteomic responses to salinity. Freshwater-spawning whitefish showed a significantly higher mortality rate in higher salinity treatments. Calcium, an ion involved in osmotic stress sensing, had a central role in the observed proteomic responses. Brackishwater-spawning fish were capable of viable osmoregulation, which was modulated by cortisol, an important seawater-adaptation hormone in teleost fish. Several proteins were identified to play key roles in osmoregulation, most importantly a highly conserved cytokine, tumour necrosis factor, whereas calcium receptor activities were associated with salinity adaptation. These results imply that individuals from these populations are most likely adapted to their local environments, even though the baseline level of genetic divergence between them is low (F(ST)=0.049). They also provide clues for choosing candidate loci for studying the molecular basis of salinity adaptation in other species. Further, our approach provides an example of how proteomic methods can be successfully used to obtain novel insights into the molecular mechanisms behind adaptation in non-model organism.


Asunto(s)
Adaptación Fisiológica/genética , Proteómica , Salinidad , Salmonidae/fisiología , Animales , Calcio/metabolismo , Femenino , Agua Dulce , Genética de Población , Masculino , Fenotipo , Mapas de Interacción de Proteínas , Salmonidae/genética , Agua de Mar , Factor de Necrosis Tumoral alfa/metabolismo , Equilibrio Hidroelectrolítico/genética
2.
J Proteomics ; 105: 144-50, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24406297

RESUMEN

Variation in gene expression is an important component of the phenotypic differences observed in nature. Gene expression variance across biological groups and environmental conditions has been studied extensively and has revealed specific genes and molecular mechanisms of interest. However, little is known regarding the importance of within-population gene expression variation to environmental adaptation. To address this issue, we quantified the proteomes of individuals of European whitefish (Coregonus lavaretus) from populations that have previously been shown to have adapted during early development to freshwater and brackishwater salinity environments. Using MS-based label-free proteomics, we studied 955 proteins in eight hatch-stage fish embryos from each population that had been reared in either freshwater or brackishwater salinity conditions. By comparing the levels of within-population protein expression variance over individuals and per protein between populations, we found that fish embryos from the population less affected by salinity level had also markedly higher levels of expression variance. Gene Ontologies and molecular pathways associated with osmoregulation showed the most significant difference of within-population proteome variance between populations. Several new candidate genes for salinity adaptation were identified, emphasising the added value of combining assessments of within-population gene expression variation with standard gene expression analysis practices for better understanding the mechanisms of environmental adaptation. BIOLOGICAL SIGNIFICANCE: We demonstrate the benefits of studying within-population gene expression variance together with more typical methods of gene expression profiling. Proteome variance differences within European whitefish populations originating from different salinity environments allowed us to identify several new candidate genes for salinity adaptation in teleost fish and generate many further hypotheses to be tested. This article is part of a Special Issue entitled: Proteomics of non-model organisms.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Peces/biosíntesis , Regulación de la Expresión Génica/fisiología , Proteoma/biosíntesis , Salinidad , Salmonidae/metabolismo , Animales , Proteínas de Peces/genética , Espectrometría de Masas/métodos , Proteoma/genética , Proteómica/métodos , Salmonidae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA